P1020 导弹拦截(dp,二分提速)

2024-04-24 14:32

本文主要是介绍P1020 导弹拦截(dp,二分提速),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这是什么神仙想出来的方法!

题目描述

某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统。但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。某天,雷达捕捉到敌国的导弹来袭。由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹。

输入导弹依次飞来的高度(雷达给出的高度数据是 \le 50000≤50000的正整数),计算这套系统最多能拦截多少导弹,如果要拦截所有导弹最少要配备多少套这种导弹拦截系统。

输入输出格式

输入格式:
1行,若干个整数(个数 ≤100000)

输出格式:
2行,每行一个整数,第一个数字表示这套系统最多能拦截多少导弹,第二个数字表示如果要拦截所有导弹最少要配备多少套这种导弹拦截系统。

输入输出样例

输入样例#1: 复制
389 207 155 300 299 170 158 65
输出样例#1: 复制
6
2
说明

为了让大家更好地测试n方算法,本题开启spj,n方100分,nlogn200分

每点两问,按问给分

思路:

dp[i]代表长度为i时连续上升子序列的最小值(?)
举个栗子
1 2 3 2 5 9

在遍历到3时dp[3]还是3,但遍历过2之后就是2了!
然后用s来记录目前最大长度,如果新的数大于dp[s],那么就s++,dp[s]为新的结尾数,如果米有_(:з」∠)_就用upper_bound找到dp数组中第一个大于a[i]的数,然后让a[i]取代之(x)

回到原题,第一问就是求最长递减子序列,因为8会求!就倒着求了一遍递增子序列(
第二问就是求最长递增子序列惹!ctrlc+v即可
ac代码:

#include <iostream>
#include <algorithm>
#include <cstring>
#include <limits.h>
using namespace std;
int a[100010]={0};
int dp[100010]={0};
int dp2[100010]={0};
int main()
{int i=0;while(cin>>a[i]) i++;int n=i,sum=0;dp[0]=-INT_MAX;for(i=n-1;i>=0;i--){if(a[i]>=dp[sum]){sum++;dp[sum]=a[i];}else{int *p=upper_bound(dp+1,dp+sum,a[i]);int h=p-dp;dp[h]=a[i];}}cout<<sum<<endl;int s=0;dp2[0]=-INT_MAX;for(i=0;i<n;i++){if(dp2[s]<a[i]){s++;dp2[s]=a[i];}else{int *p=lower_bound(dp2+1,dp2+s,a[i]);int g=p-dp2;dp2[g]=a[i];}}cout<<s<<endl;return 0;
}

这篇关于P1020 导弹拦截(dp,二分提速)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/932013

相关文章

hdu2241(二分+合并数组)

题意:判断是否存在a+b+c = x,a,b,c分别属于集合A,B,C 如果用暴力会超时,所以这里用到了数组合并,将b,c数组合并成d,d数组存的是b,c数组元素的和,然后对d数组进行二分就可以了 代码如下(附注释): #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<que

hdu2289(简单二分)

虽说是简单二分,但是我还是wa死了  题意:已知圆台的体积,求高度 首先要知道圆台体积怎么求:设上下底的半径分别为r1,r2,高为h,V = PI*(r1*r1+r1*r2+r2*r2)*h/3 然后以h进行二分 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#includ

hdu4826(三维DP)

这是一个百度之星的资格赛第四题 题目链接:http://acm.hdu.edu.cn/contests/contest_showproblem.php?pid=1004&cid=500 题意:从左上角的点到右上角的点,每个点只能走一遍,走的方向有三个:向上,向下,向右,求最大值。 咋一看像搜索题,先暴搜,TLE,然后剪枝,还是TLE.然后我就改方法,用DP来做,这题和普通dp相比,多个个向上

hdu1011(背包树形DP)

没有完全理解这题, m个人,攻打一个map,map的入口是1,在攻打某个结点之前要先攻打其他一个结点 dp[i][j]表示m个人攻打以第i个结点为根节点的子树得到的最优解 状态转移dp[i][ j ] = max(dp[i][j], dp[i][k]+dp[t][j-k]),其中t是i结点的子节点 代码如下: #include<iostream>#include<algorithm

hdu4865(概率DP)

题意:已知前一天和今天的天气概率,某天的天气概率和叶子的潮湿程度的概率,n天叶子的湿度,求n天最有可能的天气情况。 思路:概率DP,dp[i][j]表示第i天天气为j的概率,状态转移如下:dp[i][j] = max(dp[i][j, dp[i-1][k]*table2[k][j]*table1[j][col] )  代码如下: #include <stdio.h>#include

usaco 1.1 Broken Necklace(DP)

直接上代码 接触的第一道dp ps.大概的思路就是 先从左往右用一个数组在每个点记下蓝或黑的个数 再从右到左算一遍 最后取出最大的即可 核心语句在于: 如果 str[i] = 'r'  ,   rl[i]=rl[i-1]+1, bl[i]=0 如果 str[i] = 'b' ,  bl[i]=bl[i-1]+1, rl[i]=0 如果 str[i] = 'w',  bl[i]=b

uva 10154 DP 叠乌龟

题意: 给你几只乌龟,每只乌龟有自身的重量和力量。 每只乌龟的力量可以承受自身体重和在其上的几只乌龟的体重和内。 问最多能叠放几只乌龟。 解析: 先将乌龟按力量从小到大排列。 然后dp的时候从前往后叠,状态转移方程: dp[i][j] = dp[i - 1][j];if (dp[i - 1][j - 1] != inf && dp[i - 1][j - 1] <= t[i]

uva 10118 dP

题意: 给4列篮子,每次从某一列开始无放回拿蜡烛放入篮子里,并且篮子最多只能放5支蜡烛,数字代表蜡烛的颜色。 当拿出当前颜色的蜡烛在篮子里存在时,猪脚可以把蜡烛带回家。 问最多拿多少只蜡烛。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cs

uva 10069 DP + 大数加法

代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <queue>#include <map>#include <cl

uva 10029 HASH + DP

题意: 给一个字典,里面有好多单词。单词可以由增加、删除、变换,变成另一个单词,问能变换的最长单词长度。 解析: HASH+dp 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc