本文主要是介绍centernet笔记 - inference阶段后处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
预备知识,mxnet.ndarray的一些操作
shape_array
shape_array([[1,2,3,4], [5,6,7,8]]) = [2,4] # 获取ndarry的shape
# Returns a 1D int64 array containing the shape of data.
split
Splits an array along a particular axis into multiple sub-arrays.
cc = [ 1 80 128 128]
N, C, H, W = cc.split(num_outputs=4, axis=0)
# N = [1], C = [80], H = [128], W = [128]
topk
topk(data=None, axis=_Null, k=_Null, ret_typ=_Null, is_ascend=_Null, dtype=_Null, out=None, name=None, **kwargs)
# data : The input array
# axis : 从哪个维度选取topk,默认-1,即最后一个维度
# ret_typ : return type,可以选择返回值,或者index,或者both
# is_ascend : 是否逆序,默认为0,返回 top k largest
cast
Casts all elements of the input to a new type.
# 将array中元素转换为指定的类型
cast([0.9, 1.3], dtype='int32') = [0, 1]
slice_like
# Slices a region of the array like the shape of another array.
x = [[ 1., 2., 3., 4.],[ 5., 6., 7., 8.],[ 9., 10., 11., 12.]]
y = [[ 0., 0., 0.],[ 0., 0., 0.]]
slice_like(x, y) = [[ 1., 2., 3.][ 5., 6., 7.]]
slice_like(x, y, axes=(0, 1)) = [[ 1., 2., 3.][ 5., 6., 7.]]
slice_like(x, y, axes=(0)) = [[ 1., 2., 3., 4.][ 5., 6., 7., 8.]]
slice_like(x, y, axes=(-1)) = [[ 1., 2., 3.][ 5., 6., 7.][ 9., 10., 11.]]
expand_dims
# Inserts a new axis of size 1 into the array shape For example, given x with shape (2,3,4),
# then expand_dims(x, axis=1) will return a new array with shape (2,1,3,4).
mxnet.ndarray.expand_dims(data=None, axis=_Null, out=None, name=None, **kwargs)
# axis=-1, 则在末尾增加一个维度
tile
# 将array复制n次
x = [[1, 2],[3, 4]]
tile(x, reps=(2,3)) = [[ 1., 2., 1., 2., 1., 2.],[ 3., 4., 3., 4., 3., 4.],[ 1., 2., 1., 2., 1., 2.],[ 3., 4., 3., 4., 3., 4.]]
gather_nd
参考:https://discuss.gluon.ai/t/topic/2413/3
# 从array中,按照输入的索引取出其中的元素
data = [[0, 1], [2, 3]]
indices = [[1, 1, 0], [0, 1, 0]]
gather_nd(data, indices) = [2, 3, 0] # 取出(1,0),(1,1),(0,0)的元素
centernet训练与预测过程中,图片的几何变化
训练阶段:原图 -> (512,512) -> (128,128)
预测阶段:(128,128) -> (512,512) -> 原图
在inference阶段,模型的输出是在128x128的feature shape上,在feature map上得到的结果,需要乘以scale=4.0,才能映射到512x512上,接着,还必须经过512x512到原图的一个仿射变换,才能得到模型最终输出值
核心操作及解码
核心操作
# self.heatmap_nms = nn.MaxPool2D(pool_size=3, strides=1, padding=1)
heatmap = outs[0]
keep = F.broadcast_equal(self.heatmap_nms(heatmap), heatmap)
results = self.decoder(keep * heatmap, outs[1], outs[2])
outs为模型输出,在heatmap所在维度上做3x3的max pooling,把峰值点找出来
解码
def hybrid_forward(self, F, x, wh, reg):"""Forward of decoder"""import pdbpdb.set_trace()# 这里假设batch_size = 4, resize w和h为512x512_, _, out_h, out_w = x.shape_array().split(num_outputs=4, axis=0) # 获取feature map的H,Wscores, indices = x.reshape((0, -1)).topk(k=self._topk, ret_typ='both') # 获取top_100的scores和indices,x nx80x128x128 -> nx(80x128x128), 某类的128x128元素连在一起indices = F.cast(indices, 'int64')topk_classes = F.cast(F.broadcast_div(indices,(out_h * out_w)),'float32') # 根据indices,获取top_100对应的类别,0-79topk_indices = F.broadcast_mod(indices, (out_h * out_w)) # 获取在128x128平面拉平后的索引topk_ys = F.broadcast_div(topk_indices, out_w) # 1维索引恢复出2维平面上的ytopk_xs = F.broadcast_mod(topk_indices, out_w) # 1维索引恢复出2维平面上的xcenter = reg.transpose((0, 2, 3, 1)).reshape((0, -1, 2)) # shape: (4, 16384, 2)wh = wh.transpose((0, 2, 3, 1)).reshape((0, -1, 2)) # shape: (4, 16384, 2)batch_indices = F.cast(F.arange(256).slice_like(center, axes=(0)).expand_dims(-1).tile(reps=(1, self._topk)), 'int64') # shape: (4, 100), 依次为全0,全1,全2,全3reg_xs_indices = F.zeros_like(batch_indices, dtype='int64') # shape: (4, 100),全0reg_ys_indices = F.ones_like(batch_indices, dtype='int64') # shape: (4, 100),全1reg_xs = F.concat(batch_indices, topk_indices, reg_xs_indices, dim=0).reshape((3, -1)) # shape: (3, 400)‘’‘reg_xs = [[ 0 0 0 ... 3 3 3][9664 8207 9425 ... 9639 5593 9044][ 0 0 0 ... 0 0 0]]’‘’reg_ys = F.concat(batch_indices, topk_indices, reg_ys_indices, dim=0).reshape((3, -1))‘’‘reg_ys = [[ 0 0 0 ... 3 3 3][9664 8207 9425 ... 9639 5593 9044][ 1 1 1 ... 1 1 1]]’‘’xs = F.cast(F.gather_nd(center, reg_xs).reshape((-1, self._topk)), 'float32') # shape : (4, 100)ys = F.cast(F.gather_nd(center, reg_ys).reshape((-1, self._topk)), 'float32') # shape : (4, 100)topk_xs = F.cast(topk_xs, 'float32') + xstopk_ys = F.cast(topk_ys, 'float32') + ys # feature map上坐标+偏移 = 真实坐标w = F.cast(F.gather_nd(wh, reg_xs).reshape((-1, self._topk)), 'float32') # noqah = F.cast(F.gather_nd(wh, reg_ys).reshape((-1, self._topk)), 'float32') # noqahalf_w = w / 2half_h = h / 2results = [topk_xs - half_w,topk_ys - half_h,topk_xs + half_w,topk_ys + half_h]results = F.concat(*[tmp.expand_dims(-1) for tmp in results], dim=-1) # shape: (4, 100, 4)return topk_classes, scores, results * self._scale # (4, 100),(4, 100),(4, 100, 4)
由512x512映射到原图
affine_mat = get_post_transform(orig_width, orig_height, 512, 512) # 获取仿射变换矩阵
bbox[0:2] = affine_transform(bbox[0:2], affine_mat) # 对x1,y1做仿射变换
bbox[2:4] = affine_transform(bbox[2:4], affine_mat) # 对x2,y2做仿射变换
这篇关于centernet笔记 - inference阶段后处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!