设计模式- 组合模式(Composite)结构|原理|优缺点|场景|示例

本文主要是介绍设计模式- 组合模式(Composite)结构|原理|优缺点|场景|示例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

                            ​​​​​​​        设计模式(分类)        设计模式(六大原则)   

    创建型(5种)        工厂方法         抽象工厂模式        单例模式        建造者模式        原型模式

    结构型(7种)        适配器模式        装饰器模式        代理模式        ​​​​​​外观模式      桥接模式        组合模式       享元模式

    行为型(11种)      策略模式        模板方法模式        观察者模式        迭代器模式        责任链模式        命令模式

                                   备忘录模式          状态模式          访问者模式        中介者模式    


组合模式(Composite Pattern)是一种结构型设计模式,它允许你将对象组合成树形结构来表示“部分-整体”的层次结构。这种模式使得客户端可以以一致的方式处理单个对象(叶子节点)和组合对象(容器节点),无需关心处理的是个体还是群体。组合模式使得你可以将对象看作是树形结构中的节点,节点可以是简单的对象,也可以是包含其他节点的复合对象,这样就能形成一个层次化的结构。

模式结构

组合模式主要涉及以下几个角色:

  1. Component(抽象组件)

    • 定义了所有对象(包括叶子节点和容器节点)共享的公共接口。这个接口规定了如何访问和管理对象的子部件。
    • 通常会提供一个方法来添加、删除子组件,以及遍历子组件的方法。
  2. Leaf(叶子组件)

    • 是组合结构的终端节点,不包含任何子组件。
    • 实现Component接口,但对于那些与子组件管理无关的方法(如添加、删除子组件),可以提供空实现或者抛出异常。
  3. Composite(容器组件)

    • 包含一个或多个子组件,每个子组件也是Component的实例。
    • 实现Component接口,提供与管理子组件相关的方法的实际逻辑,如添加、删除子组件以及遍历子组件。
    • 可能会提供一些额外的方法来管理子组件集合,但这些方法通常不暴露给客户端。

工作原理

  • 客户端:通过Component接口与系统交互,无需区分处理的是叶子节点还是容器节点。
  • Component:定义了通用接口,为所有组件(包括叶子和容器)提供一致性。
  • Leaf:实现Component接口,但不包含子组件,因此与子组件管理相关的操作为空或无效。
  • Composite:除了实现Component接口外,还持有子组件的集合,并提供操作子组件的方法。当客户端请求操作时,Composite会递归地将请求传递给它的子组件。

优缺点

优点
  • 单一职责原则:组合模式使得叶子节点和容器节点都遵循单一职责原则,各自专注于自己的功能。
  • 透明性:客户端可以一致地处理单个对象和组合对象,无需知道处理的是叶子还是容器,提高了代码的透明性和简洁性。
  • 易于扩展:新类型的组件只需继承Component或实现相关接口即可加入到组合结构中,不影响已有代码。
缺点
  • 设计复杂度增加:为了实现组合模式,需要设计额外的抽象层和接口,使得系统变得相对复杂。
  • 递归操作可能导致性能问题:如果组合结构非常深,递归操作可能会导致栈溢出或效率下降。

适用场景

  • 系统需要处理对象的“部分-整体”关系:当需要表示对象的层级结构时,组合模式可以很好地表示这种关系。
  • 希望客户端以一致的方式处理单个对象和组合对象:组合模式使得客户端无需关心处理对象的具体类型,简化了客户端代码。
  • 希望简化新组件类型的添加:新的叶子节点或容器节点只需要符合Component接口即可轻松融入现有系统。

代码示例(以Java为例)

// 抽象组件
interface Component {void add(Component component);void remove(Component component);void operation();
}// 叶子节点
class Leaf implements Component {private String name;public Leaf(String name) {this.name = name;}@Overridepublic void add(Component component) {throw new UnsupportedOperationException("Leaves cannot have children.");}@Overridepublic void remove(Component component) {throw new UnsupportedOperationException("Leaves cannot have children.");}@Overridepublic void operation() {System.out.println("Leaf " + name + " performing operation.");}
}// 容器节点
class Composite implements Component {private List<Component> children = new ArrayList<>();private String name;public Composite(String name) {this.name = name;}@Overridepublic void add(Component component) {children.add(component);}@Overridepublic void remove(Component component) {children.remove(component);}@Overridepublic void operation() {System.out.println("Composite " + name + " performing operation.");for (Component child : children) {child.operation();}}
}// 客户端代码
public class CompositePatternDemo {public static void main(String[] args) {Component root = new Composite("Root");root.add(new Leaf("Leaf A"));root.add(new Leaf("Leaf B"));Component branch = new Composite("Branch");branch.add(new Leaf("Leaf C"));branch.add(new Leaf("Leaf D"));root.add(branch);root.operation();}
}

在这个Java示例中:

  • Component接口定义了所有组件(叶子和容器)的通用接口,包括添加、删除子组件和执行操作的方法。
  • Leaf类实现了Component接口,但其addremove方法抛出异常,表示叶子节点无法添加或删除子节点。operation方法输出叶子节点执行操作的信息。
  • Composite类同样实现了Component接口,并维护了一个List<Component>来存储子组件。addremove方法实现了对子组件的增删操作。operation方法不仅执行自身操作,还递归地调用其子组件的operation方法。
  • 客户端代码创建了一个树状结构,并通过调用根节点的operation方法,以一致的方式处理整个组合结构中的所有组件。

 代码示例(以Python为例)

from abc import ABC, abstractmethodclass FileSystemObject(ABC):"""抽象组件(Component)"""def __init__(self, name):self.name = name@abstractmethoddef add(self, child):pass@abstractmethoddef remove(self, child):pass@abstractmethoddef get_child(self, index):pass@abstractmethoddef operation(self):passclass File(FileSystemObject):"""叶子组件(Leaf)"""def add(self, child):raise TypeError("Cannot add children to a file")def remove(self, child):raise TypeError("Cannot remove children from a file")def get_child(self, index):raise IndexError("Files do not have children")def operation(self):return f"Performing operation on file: {self.name}"class Directory(FileSystemObject):"""复合组件(Composite)"""def __init__(self, name):super().__init__(name)self.children = []def add(self, child):self.children.append(child)def remove(self, child):self.children.remove(child)def get_child(self, index):return self.children[index]def operation(self):result = f"Performing operation on directory: {self.name}\n"for child in self.children:result += child.operation() + "\n"return result# 客户端代码
if __name__ == "__main__":root_dir = Directory("root")dir_a = Directory("dir_a")dir_b = Directory("dir_b")file_1 = File("file_1.txt")file_2 = File("file_2.txt")root_dir.add(dir_a)root_dir.add(dir_b)dir_a.add(file_1)dir_b.add(file_2)print(root_dir.operation())

 在这个Python示例中:

  • FileSystemObject是抽象组件,使用abc模块中的ABC类和abstractmethod装饰器定义了所有文件系统对象共有的接口,如添加、删除子对象和执行操作等。
  • File类作为叶子组件,继承自FileSystemObject,实现了operation方法,并且其addremoveget_child方法抛出异常,表示文件不能包含子对象。
  • Directory类作为复合组件,同样继承自FileSystemObject,并且维护了一个children列表来存储子对象(可以是文件或子目录)。addremoveget_child方法实现了对子对象的管理。operation方法不仅执行自身操作,还递归地调用其子对象的operation方法,从而处理整个目录树。

客户端代码创建了根目录、子目录以及文件,并建立了它们之间的层级关系。最后,通过调用根目录的operation方法,以一致的方式处理整个文件系统的对象,无论是单个文件还是包含多个子对象的目录。

这篇关于设计模式- 组合模式(Composite)结构|原理|优缺点|场景|示例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/930961

相关文章

SpringBoot中SM2公钥加密、私钥解密的实现示例详解

《SpringBoot中SM2公钥加密、私钥解密的实现示例详解》本文介绍了如何在SpringBoot项目中实现SM2公钥加密和私钥解密的功能,通过使用Hutool库和BouncyCastle依赖,简化... 目录一、前言1、加密信息(示例)2、加密结果(示例)二、实现代码1、yml文件配置2、创建SM2工具

MySQL 定时新增分区的实现示例

《MySQL定时新增分区的实现示例》本文主要介绍了通过存储过程和定时任务实现MySQL分区的自动创建,解决大数据量下手动维护的繁琐问题,具有一定的参考价值,感兴趣的可以了解一下... mysql创建好分区之后,有时候会需要自动创建分区。比如,一些表数据量非常大,有些数据是热点数据,按照日期分区MululbU

MyBatis-Plus 中 nested() 与 and() 方法详解(最佳实践场景)

《MyBatis-Plus中nested()与and()方法详解(最佳实践场景)》在MyBatis-Plus的条件构造器中,nested()和and()都是用于构建复杂查询条件的关键方法,但... 目录MyBATis-Plus 中nested()与and()方法详解一、核心区别对比二、方法详解1.and()

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

Java设计模式---迭代器模式(Iterator)解读

《Java设计模式---迭代器模式(Iterator)解读》:本文主要介绍Java设计模式---迭代器模式(Iterator),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录1、迭代器(Iterator)1.1、结构1.2、常用方法1.3、本质1、解耦集合与遍历逻辑2、统一

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

ModelMapper基本使用和常见场景示例详解

《ModelMapper基本使用和常见场景示例详解》ModelMapper是Java对象映射库,支持自动映射、自定义规则、集合转换及高级配置(如匹配策略、转换器),可集成SpringBoot,减少样板... 目录1. 添加依赖2. 基本用法示例:简单对象映射3. 自定义映射规则4. 集合映射5. 高级配置匹