LlamaIndex 加 Ollama 实现 Agent

2024-04-24 03:36
文章标签 实现 agent llamaindex ollama

本文主要是介绍LlamaIndex 加 Ollama 实现 Agent,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

AI Agent 是 AIGC 落地实现的场景之一,与 RAG 不同,RAG 是对数据的扩充,是模型可以学习到新数据或者本地私有数据。AI Agent 是自己推理,自己做,例如你对 AI Agent 说我要知道今天上海的天气怎么样,由于 AI 是个模型,底层通过一套复杂的算法进行相似度的比较,最终选出相似最高的答案,所以模型本身是无法访问网络去获取数据的。如果AIGC 只能回答问题,复杂任务和与外界的沟通还需要人手工处理,就没有发挥出模型应有的能力。所以,AI Agent 做的就是根据具体问题的上下文信息,使用对应的工具得到需要的信息,并最终将信息返回。最典型的场景就是去 Google、百度搜索,模型对结果集进行理解并最终给出结果。我们看到当问 “千问” 天气问题的时候,他是去外部查找信息的。
在这里插入图片描述
通过 LlamaIndex + 本地 Ollama Llama3实现了一个 Agent。

首先安装依赖

pip install llama-index     
pip install llama-index-llms-ollama
pip install python-dotenv 
pip install llama-index-embeddings-huggingface

申请LlamaIndex API

https://cloud.llamaindex.ai/ 申请一个 API Key,使用 Llama Parser 解析 PDF。

Ollama

下载 Ollama3 和 Code Llama,一个模型用于 RAG,一个模型用于生成代码

解析 PDF 并生成 Python 代码

运行以下代码,输入 promote
"read content of test.py and write a python script to call post api to create a new item " 稍等文件就可以生成了。

from llama_index.llms.ollama import Ollama
from llama_parse import LlamaParse
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, PromptTemplate
from llama_index.core.embeddings import resolve_embed_model
from llama_index.core.tools import QueryEngineTool, ToolMetadata
from llama_index.core.agent import ReActAgent
from pydantic import BaseModel
from llama_index.core.output_parsers import PydanticOutputParser
from llama_index.core.query_pipeline import QueryPipeline
from prompts import context, code_parser_template
from code_reader import code_reader
from dotenv import load_dotenv
import os
import astload_dotenv()llm = Ollama(model="llama3", request_timeout=30.0)parser = LlamaParse(result_type="markdown")file_extractor = {".pdf": parser}
documents = SimpleDirectoryReader("./data", file_extractor=file_extractor).load_data()embed_model = resolve_embed_model("local:BAAI/bge-m3")
vector_index = VectorStoreIndex.from_documents(documents, embed_model=embed_model)
query_engine = vector_index.as_query_engine(llm=llm)tools = [QueryEngineTool(query_engine=query_engine,metadata=ToolMetadata(name="api_documentation",description="this gives documentation about code for an API. Use this for reading docs for the API",),),code_reader,
]code_llm = Ollama(model="llama3")
agent = ReActAgent.from_tools(tools, llm=code_llm, verbose=True, context=context)class CodeOutput(BaseModel):code: strdescription: strfilename: strparser = PydanticOutputParser(CodeOutput)
json_prompt_str = parser.format(code_parser_template)
json_prompt_tmpl = PromptTemplate(json_prompt_str)
output_pipeline = QueryPipeline(chain=[json_prompt_tmpl, llm])while (prompt := input("Enter a prompt (q to quit): ")) != "q":retries = 0while retries < 3:try:result = agent.query(prompt)next_result = output_pipeline.run(response=result)cleaned_json = ast.literal_eval(str(next_result).replace("assistant:", ""))breakexcept Exception as e:retries += 1print(f"Error occured, retry #{retries}:", e)if retries >= 3:print("Unable to process request, try again...")continueprint("Code generated")print(cleaned_json["code"])print("\n\nDesciption:", cleaned_json["description"])filename = cleaned_json["filename"]try:with open(os.path.join("output", filename), "w") as f:f.write(cleaned_json["code"])print("Saved file", filename)except:print("Error saving file...")

相关文件上传到资源中了,或者访问git 进行下载 https://gitee.com/wan2000/aiagent。有了 Agent 这个框架感觉可以做很多类型 Agent,比如写数据库SQL、或者做复杂的查查询、接入第三方 API等,接下来我会做些 Agent 看看效果如何 。

这篇关于LlamaIndex 加 Ollama 实现 Agent的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/930652

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、