LlamaIndex 加 Ollama 实现 Agent

2024-04-24 03:36
文章标签 实现 agent llamaindex ollama

本文主要是介绍LlamaIndex 加 Ollama 实现 Agent,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

AI Agent 是 AIGC 落地实现的场景之一,与 RAG 不同,RAG 是对数据的扩充,是模型可以学习到新数据或者本地私有数据。AI Agent 是自己推理,自己做,例如你对 AI Agent 说我要知道今天上海的天气怎么样,由于 AI 是个模型,底层通过一套复杂的算法进行相似度的比较,最终选出相似最高的答案,所以模型本身是无法访问网络去获取数据的。如果AIGC 只能回答问题,复杂任务和与外界的沟通还需要人手工处理,就没有发挥出模型应有的能力。所以,AI Agent 做的就是根据具体问题的上下文信息,使用对应的工具得到需要的信息,并最终将信息返回。最典型的场景就是去 Google、百度搜索,模型对结果集进行理解并最终给出结果。我们看到当问 “千问” 天气问题的时候,他是去外部查找信息的。
在这里插入图片描述
通过 LlamaIndex + 本地 Ollama Llama3实现了一个 Agent。

首先安装依赖

pip install llama-index     
pip install llama-index-llms-ollama
pip install python-dotenv 
pip install llama-index-embeddings-huggingface

申请LlamaIndex API

https://cloud.llamaindex.ai/ 申请一个 API Key,使用 Llama Parser 解析 PDF。

Ollama

下载 Ollama3 和 Code Llama,一个模型用于 RAG,一个模型用于生成代码

解析 PDF 并生成 Python 代码

运行以下代码,输入 promote
"read content of test.py and write a python script to call post api to create a new item " 稍等文件就可以生成了。

from llama_index.llms.ollama import Ollama
from llama_parse import LlamaParse
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, PromptTemplate
from llama_index.core.embeddings import resolve_embed_model
from llama_index.core.tools import QueryEngineTool, ToolMetadata
from llama_index.core.agent import ReActAgent
from pydantic import BaseModel
from llama_index.core.output_parsers import PydanticOutputParser
from llama_index.core.query_pipeline import QueryPipeline
from prompts import context, code_parser_template
from code_reader import code_reader
from dotenv import load_dotenv
import os
import astload_dotenv()llm = Ollama(model="llama3", request_timeout=30.0)parser = LlamaParse(result_type="markdown")file_extractor = {".pdf": parser}
documents = SimpleDirectoryReader("./data", file_extractor=file_extractor).load_data()embed_model = resolve_embed_model("local:BAAI/bge-m3")
vector_index = VectorStoreIndex.from_documents(documents, embed_model=embed_model)
query_engine = vector_index.as_query_engine(llm=llm)tools = [QueryEngineTool(query_engine=query_engine,metadata=ToolMetadata(name="api_documentation",description="this gives documentation about code for an API. Use this for reading docs for the API",),),code_reader,
]code_llm = Ollama(model="llama3")
agent = ReActAgent.from_tools(tools, llm=code_llm, verbose=True, context=context)class CodeOutput(BaseModel):code: strdescription: strfilename: strparser = PydanticOutputParser(CodeOutput)
json_prompt_str = parser.format(code_parser_template)
json_prompt_tmpl = PromptTemplate(json_prompt_str)
output_pipeline = QueryPipeline(chain=[json_prompt_tmpl, llm])while (prompt := input("Enter a prompt (q to quit): ")) != "q":retries = 0while retries < 3:try:result = agent.query(prompt)next_result = output_pipeline.run(response=result)cleaned_json = ast.literal_eval(str(next_result).replace("assistant:", ""))breakexcept Exception as e:retries += 1print(f"Error occured, retry #{retries}:", e)if retries >= 3:print("Unable to process request, try again...")continueprint("Code generated")print(cleaned_json["code"])print("\n\nDesciption:", cleaned_json["description"])filename = cleaned_json["filename"]try:with open(os.path.join("output", filename), "w") as f:f.write(cleaned_json["code"])print("Saved file", filename)except:print("Error saving file...")

相关文件上传到资源中了,或者访问git 进行下载 https://gitee.com/wan2000/aiagent。有了 Agent 这个框架感觉可以做很多类型 Agent,比如写数据库SQL、或者做复杂的查查询、接入第三方 API等,接下来我会做些 Agent 看看效果如何 。

这篇关于LlamaIndex 加 Ollama 实现 Agent的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/930652

相关文章

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

C#实现获得某个枚举的所有名称

《C#实现获得某个枚举的所有名称》这篇文章主要为大家详细介绍了C#如何实现获得某个枚举的所有名称,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... C#中获得某个枚举的所有名称using System;using System.Collections.Generic;usi

Go语言实现将中文转化为拼音功能

《Go语言实现将中文转化为拼音功能》这篇文章主要为大家详细介绍了Go语言中如何实现将中文转化为拼音功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 有这么一个需求:新用户入职 创建一系列账号比较麻烦,打算通过接口传入姓名进行初始化。想把姓名转化成拼音。因为有些账号即需要中文也需要英

C# 读写ini文件操作实现

《C#读写ini文件操作实现》本文主要介绍了C#读写ini文件操作实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录一、INI文件结构二、读取INI文件中的数据在C#应用程序中,常将INI文件作为配置文件,用于存储应用程序的

C#实现获取电脑中的端口号和硬件信息

《C#实现获取电脑中的端口号和硬件信息》这篇文章主要为大家详细介绍了C#实现获取电脑中的端口号和硬件信息的相关方法,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 我们经常在使用一个串口软件的时候,发现软件中的端口号并不是普通的COM1,而是带有硬件信息的。那么如果我们使用C#编写软件时候,如