在Milk-v Duo上部署YOLOV8模型

2024-04-24 01:28
文章标签 部署 模型 yolov8 milk duo

本文主要是介绍在Milk-v Duo上部署YOLOV8模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

建议自己编译images固件,我使用官方给的固件在部署中出现了一些问题,请参考: 编译Milkv-duo固件-CSDN博客

下载YOLOv8

git clone https://github.com/ultralytics/ultralytics.git

下载yolo_export.zip

下载链接:链接:百度网盘 请输入提取码 提取码:184a

在Windows下搭建配置yolov8虚拟环境

将yolo_export/yolov8_export.py 代码复制到 yolov8 仓库下,下载YOLOv8的权重文件: https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt

然后使用以下命令导出分支版本的 onnx 模型:

python yolov8_export.py --weights ./weights/yolov8n.pt

运行上述代码之后,可以在./weights/目录下得到 yolov8n.onnx 文件。

在Windows上搭建Docker环境

请参考:在Milk-V Duo上部署MobileNetV2_mobilenetv2 部署-CSDN博客

docker run -it 镜像名字 /bin/bash    //创建并拉取镜像

若已有Docker环境,则使用docker ps 列出所有镜像,并使用以下命令进入Docker环境(一定要先运行Docker客户端)

docker pull sophgo/tpuc_dev:v3.1    //拉取镜像

 在Docker环境中创建名为workpace的文件夹,在该文件夹下面创建yolov8n文件夹,将yolov8n.onnx通过以下命令将其传送到Docker的yolov8n文件夹下

复制文件到容器:使用docker cp <path>/文件 容器id:/目标路径将文件从主机复制到容器。
复制文件从容器:使用docker cp 容器id:/容器内路径 <path>/文件将文件从容器复制到主机。
例如:
docker cp  funny_noyce:/workspace/cvitek_tdl_sdk.tar  C:\Users\xuankui\Desktop\
docker cp  funny_noyce:/workspace/tpu-mlir C:\Users\xuankui\Desktop\

 下载 tpu-mlir 工具包

下载链接:链接:百度网盘 请输入提取码 提取码:5fht(git clone GitHub - milkv-duo/tpu-mlir: TPU-MLIR model conversion tool),将其发送到/workspace,并设置环境变量:

source tpu-mlir/envsetup.sh

下载数据集

cp -rf $TPUC_ROOT/regression/dataset/COCO2017 .
cp -rf $TPUC_ROOT/regression/image .

模型转换

转换模型需要在指定的 docker 执行,主要的步骤可以分为两步:

  • 第一步是通过 model_transform.py 将原始模型转换为 mlir 文件
  • 第二步是通过 model_deploy.py 将 mlir 文件转换成 cvimodel

如果需要转换为 INT8 模型,还需要在第二步之前调用 run_calibration.py 生成校准表,然后传给 model_deploy.py

ONNX 转 MLIR

model_transform.py \
--model_name yolov8n \
--model_def yolov8n.onnx \
--input_shapes [[1,3,640,640]] \
--mean 0.0,0.0,0.0 \
--scale 0.0039216,0.0039216,0.0039216 \
--keep_aspect_ratio \
--pixel_format rgb \
--test_input ./dog.jpg \
--test_result yolov8n_top_outputs.npz \
--mlir yolov8n.mlir

 MLIR 转 INT8 模型

转 INT8 模型前需要跑 calibration,得到校准表;输入数据的数量根据情况准备 100~1000 张左右。然后用校准表,生成 cvimodel。生成校对表的图片尽可能和训练数据分布相似。这个数据集从COCO2017提取100来做校准,用其他图片也是可以的。

run_calibration.py yolov8n.mlir \
--dataset COCO2017 \
--input_num 100 \
-o yolov8n_cali_table

运行完成之后会生成名为 yolov8n_cali_table 的文件,该文件用于后续编译 cvimode 模型的输入文件。然后生成 int8 对称量化 cvimodel 模型,执行如下命令:

model_deploy.py \
--mlir yolov8n.mlir \
--quant_input \
--quant_output \
--quantize INT8 \
--calibration_table yolov8n_cali_table \
--chip cv180x \
--model yolov8n_cv180x_int8_sym.cvimodel \
--test_input yolov8n_in_f32.npz \
--test_reference yolov8n_top_outputs.npz \
--tolerance 0.85,0.45

 其中–quant_output 参数表示将输出层也量化为 int8,不添加该参数则保留输出层为float32。从后续测试结果来说,将输出层量化为 int8,可以减少部分 ion,并提高推理速度,并且模型检测精度基本没有下降,推荐添加–quant_output 参数。在上述步骤运行成功之后,我们就获得了我们量化好的yolov8n_cv180x_int8_sym.cvimodel模型。

TDL-SDK编译与验证

首先使用以下命令获取交叉编译工具

wget https://sophon-file.sophon.cn/sophon-prod-s3/drive/23/03/07/16/host-tools.tar.gz
tar xvf host-tools.tar.gz
cd host-tools
export PATH=$PATH:$(pwd)/gcc/riscv64-linux-musl-x86_64/bin

 下载cvitek_tdl_sdk并将其发送到/workspace下,下载链接:链接:链接:百度网盘 请输入提取码 提取码:ltro,进入到cvitek_tdl_sdk下的sample目录下。

chmod 777 compile_sample.sh
./compile_sample.sh

模型推理验证 

通过nfs或者ssh的方式将cvitek_tdl_sdk(可以压缩一下,可能在传输过程中会有文件丢失)、yolov8n_cv180x_int8_sym.cvimodel以及一张测试图像传输到开发板的/mnt目录下。

 首先,我们需要配置我们开发板的环境变量,此命令在milkv-duo重启后需要再次执行

export LD_LIBRARY_PATH=/mnt/cvitek_tdl_sdk/lib:\
/mnt/cvitek_tdl_sdk/sample/3rd/opencv/lib:\
/mnt/cvitek_tdl_sdk/sample/3rd/tpu/lib:\
/mnt/cvitek_tdl_sdk/sample/3rd/ive/lib:\
/mnt/cvitek_tdl_sdk/sample/3rd/middleware/v2/lib:\
/mnt/cvitek_tdl_sdk/sample/3rd/lib:\
/mnt/cvitek_tdl_sdk/sample/3rd/middleware/v2/lib/3rd:
cd  /mnt/cvitek_tdl_sdk/bin

 输入以下命令,看到如下推理结果,就说明模型部署成功。

./sample_yolov8 /mnt/yolov8n_cv180x_int8_sym.cvimodel /mnt/dog.jpg 

这篇关于在Milk-v Duo上部署YOLOV8模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/930420

相关文章

ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法

《ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法》本文介绍了Elasticsearch的基本概念,包括文档和字段、索引和映射,还详细描述了如何通过Docker... 目录1、ElasticSearch概念2、ElasticSearch、Kibana和IK分词器部署

部署Vue项目到服务器后404错误的原因及解决方案

《部署Vue项目到服务器后404错误的原因及解决方案》文章介绍了Vue项目部署步骤以及404错误的解决方案,部署步骤包括构建项目、上传文件、配置Web服务器、重启Nginx和访问域名,404错误通常是... 目录一、vue项目部署步骤二、404错误原因及解决方案错误场景原因分析解决方案一、Vue项目部署步骤

Linux流媒体服务器部署流程

《Linux流媒体服务器部署流程》文章详细介绍了流媒体服务器的部署步骤,包括更新系统、安装依赖组件、编译安装Nginx和RTMP模块、配置Nginx和FFmpeg,以及测试流媒体服务器的搭建... 目录流媒体服务器部署部署安装1.更新系统2.安装依赖组件3.解压4.编译安装(添加RTMP和openssl模块

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

redis群集简单部署过程

《redis群集简单部署过程》文章介绍了Redis,一个高性能的键值存储系统,其支持多种数据结构和命令,它还讨论了Redis的服务器端架构、数据存储和获取、协议和命令、高可用性方案、缓存机制以及监控和... 目录Redis介绍1. 基本概念2. 服务器端3. 存储和获取数据4. 协议和命令5. 高可用性6.

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

nginx部署https网站的实现步骤(亲测)

《nginx部署https网站的实现步骤(亲测)》本文详细介绍了使用Nginx在保持与http服务兼容的情况下部署HTTPS,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值... 目录步骤 1:安装 Nginx步骤 2:获取 SSL 证书步骤 3:手动配置 Nginx步骤 4:测

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus