本文主要是介绍使用gdal均匀筛选点矢量,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
使用gdal均匀筛选点矢量
作用:
通过计算各点之间的欧式距离,筛选出符合目标的、均匀发布在空间中的N个数据点。
效果示意图
运行环境
python 3.10
安装:tqdm、numpy和tqdm这三个库
完整代码
import numpy as np
from osgeo import ogr, osr
from tqdm import tqdm# 代码作用:通过计算各点之间的欧式距离,筛选出符合目标的、均匀发布在空间中的N个数据点。# 定义需要采样的个数
n_samples = 100
input_path = r"测试数据\村点.shp"
output_path = r"测试数据\samples.shp"# 1. 读取原始点数据
driver = ogr.GetDriverByName('ESRI Shapefile')
inds = driver.Open(input_path, 0)
layer = inds.GetLayer()# 2. 提取点坐标和属性
coords = []
attrs = []
for feature in layer:geom = feature.GetGeometryRef()coords.append((geom.GetX(), geom.GetY()))attrs.append([feature.GetField(i) for i in range(feature.GetFieldCount())])
coords = np.array(coords)
attrs = np.array(attrs)# 3. 定义距离函数
def distance(p1, p2):return np.sqrt(np.sum((p1 - p2)**2))# 4. 随机选择第一个点
idx = np.random.choice(coords.shape[0], 1)
samples = coords[idx]
sample_attrs = attrs[idx]# 5. 选择空间均衡的采样点
for _ in tqdm(range(n_samples - 1)):dists = np.array([np.min(np.array([distance(p, s) for s in samples])) for p in coords])idx = np.argmax(dists)samples = np.append(samples, [coords[idx]], axis=0)sample_attrs = np.append(sample_attrs, [attrs[idx]], axis=0)coords = np.delete(coords, idx, axis=0)attrs = np.delete(attrs, idx, axis=0)# 6. 将采样点转为gdal几何对象
out_samples = []
for sample in samples:point = ogr.Geometry(ogr.wkbPoint)point.AddPoint(sample[0], sample[1])out_samples.append(point)# 7. 创建新的矢量层并写入采样点
out_driver = ogr.GetDriverByName('ESRI Shapefile')
out_ds = out_driver.CreateDataSource(output_path)
out_layer = out_ds.CreateLayer('samples', layer.GetSpatialRef(), ogr.wkbPoint)# 添加属性字段
for i in range(len(layer.schema)):field_defn = layer.schema[i]out_layer.CreateField(field_defn)# 写入采样点要素
for i, sample in enumerate(out_samples):feature = ogr.Feature(out_layer.GetLayerDefn())feature.SetGeometry(sample)for j, attr in enumerate(sample_attrs[i]):feature.SetField(j, attr)out_layer.CreateFeature(feature)out_layer = None
out_ds = None
这篇关于使用gdal均匀筛选点矢量的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!