本文主要是介绍代码随想录算法训练营第55天|392.判断子序列、115.不同的子序列,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
392.判断子序列
题目链接:最长公共子序列
题目描述:给定字符串 s 和 t ,判断 s 是否为 t 的子序列。
字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,
"ace"
是"abcde"
的一个子序列,而"aec"
不是)。
双指针:
这道题也可以用双指针的思路来实现,时间复杂度是O(n))
class Solution {
public:bool isSubsequence(string s, string t) {int i = 0;for (int j = 0; j < t.size(); j++) {if (s[i] == t[j]) {i++;}}return i == s.size();}
};
动态规划:
这道题其实是最长重复子数组的扩展,如果最长重复子数组的长度和字符串s的长度相同,则s是t的子序列。
动规五部曲
-
确定dp数组(dp table)以及下标的含义 dp[i][j] 表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]。
-
确定递推公式 在确定递推公式的时候,首先要考虑如下两种操作,整理如下:
- if (s[i - 1] == t[j - 1]). t中找到了一个字符在s中也出现了
- if (s[i - 1] != t[j - 1]). 相当于t要删除元素,继续匹配
if (s[i - 1] == t[j - 1]),那么dp[i][j] = dp[i - 1][j - 1] + 1;,因为找到了一个相同的字符,相同子序列长度自然要在dp[i-1][j-1]的基础上加1 if (s[i - 1] != t[j - 1]),此时相当于t要删除元素,t如果把当前元素t[j - 1]删除,那么dp[i][j] 的数值就是 看s[i - 1]与 t[j - 2]的比较结果了,即:dp[i][j] = dp[i][j - 1];
-
dp[i]的初始化 从递推公式可以看出dp[i][j]都是依赖于dp[i - 1][j - 1] 和 dp[i][j - 1],所以dp[0][0]和dp[i][0]是一定要初始化的。
-
确定遍历顺序 从递推公式,可以看出,有三个方向可以推出dp[i][j],分别为dp[i-1][j]、dp[i][j-1]。所以要从前向后,从上到下来遍历这个矩阵。
class Solution {
public:bool isSubsequence(string s, string t) {vector<vector<int>> dp(s.size() + 1, vector<int>(t.size() + 1, 0));for (int i = 1; i <= s.size(); i++) {for (int j = 1; j <= t.size(); j++) {if (s[i - 1] == t[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;else dp[i][j] = dp[i][j - 1];}}if (dp[s.size()][t.size()] == s.size()) return true;return false;}
};
- 时间复杂度: O(n * m),其中 n 和 m 分别为 s 和 t 的长度
- 空间复杂度: O(n * m)
115.不同的子序列
题目链接:不同的子序列
题目描述:给你两个字符串
s
****和t
,统计并返回在s
的 子序列 中t
出现的个数,结果需要对 109 + 7 取模。
解题思路:
- 确定dp数组(dp table)以及下标的含义 dp[i][j]:以i-1为结尾的s子序列中出现以j-1为结尾的t的个数为dp[i][j]。
- 确定递推公式 这一类问题,基本是要分析两种情况:
- 当s[i - 1] 与 t[j - 1]相等时,dp[i][j]可以有两部分组成。一部分是用s[i - 1]来匹配,那么个数为dp[i - 1][j - 1]。即不需要考虑当前s子串和t子串的最后一位字母,所以只需要 dp[i-1][j-1]。一部分是不用s[i - 1]来匹配,个数为dp[i - 1][j]。
- 当s[i - 1] 与 t[j - 1]不相等时,dp[i][j]只有一部分组成,不用s[i - 1]来匹配(就是模拟在s中删除这个元素),即:dp[i - 1][j]
- dp数组如何初始化 从递推公式dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]; 和 dp[i][j] = dp[i - 1][j]; 中可以看出dp[i][j] 是从上方和左上方推导而来,如图:,那么 dp[i][0] 和dp[0][j]是一定要初始化的。
- dp[i][0] 表示:以i-1为结尾的s可以随便删除元素,出现空字符串的个数。那么dp[i][0]一定都是1,因为也就是把以i-1为结尾的s,删除所有元素,出现空字符串的个数就是1。
- 再来看dp[0][j],dp[0][j]:空字符串s可以随便删除元素,出现以j-1为结尾的字符串t的个数。那么dp[0][j]一定都是0,s如论如何也变成不了t。
- 确定遍历顺序 从递推公式dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]; 和 dp[i][j] = dp[i - 1][j]; 中可以看出dp[i][j]都是根据左上方和正上方推出来的。
class Solution {
public:int numDistinct(string s, string t) {vector<vector<uint64_t>> dp(s.size() + 1, vector<uint64_t>(t.size() + 1));for (int i = 0; i < s.size(); i++) dp[i][0] = 1;for (int j = 1; j < t.size(); j++) dp[0][j] = 0;for (int i = 1; i <= s.size(); i++) {for (int j = 1; j <= t.size(); j++) {if (s[i - 1] == t[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];} else {dp[i][j] = dp[i - 1][j];}}}return dp[s.size()][t.size()];}
};
- 时间复杂度: O(n * m)
- 空间复杂度: O(n * m)
这篇关于代码随想录算法训练营第55天|392.判断子序列、115.不同的子序列的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!