代码随想录算法训练营DAY30|C++回溯算法Part.6|332.重新安排行程、51.N皇后、31.解数独

本文主要是介绍代码随想录算法训练营DAY30|C++回溯算法Part.6|332.重新安排行程、51.N皇后、31.解数独,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 332.重新安排行程
    • 思路
      • 死循环的问题
      • 记录映射关系解决死循环并解决字母序问题
    • 伪代码实现
    • CPP代码
  • 51.N皇后
    • 思路
    • 伪代码实现
    • CPP代码
  • 31.解数独
    • 伪代码实现
    • CPP代码

332.重新安排行程

力扣题目链接

文章讲解:332.重新安排行程

状态:题目要求所有机票都必须用一次且只能用一次

其实,深搜和回溯本来就是相关联的,他们经常被放到一起来讨论。

深度优先搜索是一种遍历或搜索算法,它从一个节点开始,尽可能深地搜索树或图的分支。在每个节点上,DFS会选择一个未被访问过的邻接节点继续搜索,直到到达一个没有未被访问过的邻接节点的节点,然后回溯到上一个节点继续搜索。这个过程会一直进行,直到所有节点都被访问过。

那么现在我们来讨论本题的五个难点,做完题目之后应当回答:

  1. 一个行程中,如果航班处理不好容易变成一个圈,成为死循环
  2. 有多种解法,字母序靠前排在前面,应该如何记录映射关系呢?
  3. 使用回溯法的话,终止条件是什么呢?
  4. 搜索的过程中,如何遍历一个机场所对应的所有机场。

思路

首先一个基本的思路应该是什么样的呢?也就是如何绘制树形结构图:

死循环的问题

记录映射关系解决死循环并解决字母序问题

我们在本题中,首先就涉及到映射关系的选型,这里先给出答案:

unordered_map<出发机场, map<到达机场, 航班次数>> targets

一个机场要映射多个机场,机场之间要靠字母序排列。

所以一个机场映射多个机场我们使用unordered_map

机场之间靠字母序map\multimap\multiset

所以映射关系有

unordered_map<string, multiset<string>> targets;
unordered_map<string, map<string, int>> targets

本题中,为了防止搜索过程没有及时删除目的机场陷入死循环,同时,遍历multiset的时候如果删除元素会导致迭代器失效,为了使思路更加简单我们使用第二个。

再遍历 unordered_map<出发机场, map<到达机场, 航班次数>> targets的过程中,可以使用"航班次数"这个字段的数字做相应的增减,来标记到达机场是否使用过了。

如果“航班次数”大于零,说明目的地还可以飞,如果“航班次数”等于零说明目的地不能飞了,而不用对集合做删除元素或者增加元素的操作。

伪代码实现

  • 初始化结果集和映射关系
for (const vector<string>& vec : tickets) {target[vec[0]][vec[1]]++;	//记录映射关系
}
result.push_back("JFK");	//起始机场
  • 递归函数参数:

    • 使用unordered_map<string, map<string, int>> targets; 来记录航班的映射关系,定义为全局变量。
    • 参数里还需要ticketNum,表示有多少个航班(终止条件会用上)。
    • 返回值用bool,因为我们只需要找到一个行程,也就是说找到在树形结构中唯一的一条通向叶子结点的路线就返回!
    // unordered_map<出发机场, map<到达机场, 航班次数>> targets
    unordered_map<string, map<string, int>> targets;
    bool backtracking(int ticketNum, vector<string>& result) {
    }
    
  • 递归终止条件:输入: [[“MUC”, “LHR”], [“JFK”, “MUC”], [“SFO”, “SJC”], [“LHR”, “SFO”]] ,这是有4个航班,那么只要找出一种行程,行程里的机场个数是5就可以了。

    所以终止条件是:我们回溯遍历的过程中,遇到的机场个数,如果达到了(航班数量+1),那么我们就找到了一个行程,把所有航班串在一起了。

    if (result.size() == ticketNum + 1){return true;
    }
    
  • 单层搜索的逻辑:

for (pair<const string, int>& target: targets[result[result.size() - 1]]){if (target.second > 0){ //记录到达飞机是否飞过result.push_back(target.first);target.second--;if (backtracking(ticketNum, result)) return true;result.pop_back();target.second++;}
}

CPP代码

class Solution {
private:
// unordered_map<出发机场, map<到达机场, 航班次数>> targets
unordered_map<string, map<string, int>> targets;
bool backtracking(int ticketNum, vector<string>& result) {if (result.size() == ticketNum + 1) {return true;}for (pair<const string, int>& target : targets[result[result.size() - 1]]) {if (target.second > 0 ) { // 记录到达机场是否飞过了result.push_back(target.first);target.second--;if (backtracking(ticketNum, result)) return true;result.pop_back();target.second++;}}return false;
}
public:vector<string> findItinerary(vector<vector<string>>& tickets) {targets.clear();vector<string> result;for (const vector<string>& vec : tickets) {targets[vec[0]][vec[1]]++; // 记录映射关系}result.push_back("JFK"); // 起始机场backtracking(tickets.size(), result);return result;}
};

51.N皇后

力扣题目链接

文章讲解:51.N皇后

视频讲解:这就是传说中的N皇后? 回溯算法安排!| LeetCode:51.N皇后

状态:题目要求每行和没列都不允许有两个皇后,然后两个四十五度角也不能出现两个皇后。

本题首先第一个难点就是:

  • 一个棋盘,我们要搜索的是一个二维数组,这应该怎么弄?
  • 树形结构咋画?

看完全部解答后,再回答这两个问题。

思路

以3X3为例:

从图中,可以看出,二维矩阵中矩阵的高就是这棵树的高度矩阵的宽就是树形结构中每一个节点的宽度

所以到这里就可以确定,只要搜索到了树的叶子节点,说明就找到了皇后们的合理位置了

伪代码实现

  • 递归函数参数:用全局变量result来记录最终结果,参数n是棋盘的大小,然后用row来记录当前遍历到棋盘的第几层了。
vector<vector<string>> result;
void backtracking(int n, int row, vector<string>& chessboard) {
  • 递归终止条件:前文说过只要搜索到了树的叶子节点,说明就找到了皇后们的合理位置了
if (row == n) {result.push_back(chessboard);return ;
}
  • 单层搜索逻辑

    • 递归深度就是row控制棋盘的行,每一层里for循环的col控制棋盘的列,一行一列,确定了放置皇后的位置。
    • 每次都是要从新的一行的起始位置开始搜,所以都是从0开始。
    for (int col = 0; col < n; col++){if (Valid(row, col, chessboard, n)){//验证合法chessboard[row][col] = 'Q'; //放置皇后backtracking(n, row + 1, chessboard);chessboard[row][col] = '.'; //回溯,撤销皇后}
    }
    
  • 验证棋盘是否合法:不能同行;不能同列;不能同斜线(45度和135度)

    • 在单层搜索的过程中,每一层递归,只会选for循环(也就是同一行)里的一个元素,所以行不用检查
bool isValid(int row, int col, vector<string>& chessboard, int n) {// 检查列for (int i = 0; i < row; i++) { if (chessboard[i][col] == 'Q') {return false;}}// 检查 45度for (int i = row - 1, j = col - 1; i >=0 && j >= 0; i--, j--) {if (chessboard[i][j] == 'Q') {return false;}}// 检查 135度for(int i = row - 1, j = col + 1; i >= 0 && j < n; i--, j++) {if (chessboard[i][j] == 'Q') {return false;}}return true;
}

CPP代码

class Solution {
private:vector<vector<string>> result;// n 为输入的棋盘大小// row 是当前递归到棋盘的第几行了void backtracking(int n, int row, vector<string>& chessboard) {if (row == n) {result.push_back(chessboard);return;}for (int col = 0; col < n; col++) {if (isValid(row, col, chessboard, n)) { // 验证合法就可以放chessboard[row][col] = 'Q'; // 放置皇后backtracking(n, row + 1, chessboard);chessboard[row][col] = '.'; // 回溯,撤销皇后}}}bool isValid(int row, int col, vector<string>& chessboard, int n) {// 检查列for (int i = 0; i < row; i++) { // 这是一个剪枝if (chessboard[i][col] == 'Q') {return false;}}// 检查 45度角是否有皇后for (int i = row - 1, j = col - 1; i >=0 && j >= 0; i--, j--) {if (chessboard[i][j] == 'Q') {return false;}}// 检查 135度角是否有皇后for(int i = row - 1, j = col + 1; i >= 0 && j < n; i--, j++) {if (chessboard[i][j] == 'Q') {return false;}}return true;}
public:vector<vector<string>> solveNQueens(int n) {result.clear();std::vector<std::string> chessboard(n, std::string(n, '.'));backtracking(n, 0, chessboard);return result;}
};

31.解数独

力扣题目链接

文章讲解:31.解数独

视频讲解:回溯算法二维递归?解数独不过如此!| LeetCode:37. 解数独

状态:仅做记录

数独是一个典型的递归、回溯游戏

这里与N皇后不同的就是,棋盘的每一个位置都要放一个数字(而N皇后是一行只放一个皇后),并检查数字是否合法,解数独的树形结构要比N皇后更宽更深

树形结构如图

2020111720451790-20230310131816104

伪代码实现

  • 递归函数以及参数:

因为解数独找到一个符合的条件(就在树的叶子节点上)立刻就返回,相当于找从根节点到叶子节点一条唯一路径,所以需要使用bool返回值

bool backtracking(vector<vector<char>>& board)
  • 递归终止条件:本题不需要终止条件,解数独是要遍历整个树形结构寻找可能的叶子节点就立刻返回。

本题中的终止条件全部放到单层递归的逻辑里面,因为递归的下一层的棋盘一定比上一层的棋盘多一个数,等数填满了棋盘自然就终止(填满当然好了,说明找到结果了),所以不需要终止条件!

在一个棋盘中如果出现了永远填不满的情况,我们也会在单层递归里面去return false

  • 单层递归逻辑

我们需要一个二维递归,一个遍历行,一个遍历列。如果一行一列确定下来了,在某个格子常识了9个数都不行,就说明该数独问题无解,可以直接return false

bool backtracking(vector<vector<char>>& board) {for (int i = 0; i < board.size(); i++) {        // 遍历行for (int j = 0; j < board[0].size(); j++) { // 遍历列if (board[i][j] != '.') continue;for (char k = '1'; k <= '9'; k++) {     // (i, j) 这个位置放k是否合适if (isValid(i, j, k, board)) {board[i][j] = k;                // 放置kif (backtracking(board)) return true; // 如果找到合适一组立刻返回board[i][j] = '.';              // 回溯,撤销k}}return false;                           // 9个数都试完了,都不行,那么就返回false}}return true; // 遍历完没有返回false,说明找到了合适棋盘位置了
}
  • 判断合法性:同行是否重复,同列是否重复,9宫格里是否重复
bool isValid(int row, int col, char val, vector<vector<char>>& board) {for (int i = 0; i < 9; i++) { // 判断行里是否重复if (board[row][i] == val) {return false;}}for (int j = 0; j < 9; j++) { // 判断列里是否重复if (board[j][col] == val) {return false;}}int startRow = (row / 3) * 3;int startCol = (col / 3) * 3;for (int i = startRow; i < startRow + 3; i++) { // 判断9方格里是否重复for (int j = startCol; j < startCol + 3; j++) {if (board[i][j] == val ) {return false;}}}return true;
}

CPP代码

class Solution {
private:
bool backtracking(vector<vector<char>>& board) {for (int i = 0; i < board.size(); i++) {        // 遍历行for (int j = 0; j < board[0].size(); j++) { // 遍历列if (board[i][j] == '.') {for (char k = '1'; k <= '9'; k++) {     // (i, j) 这个位置放k是否合适if (isValid(i, j, k, board)) {board[i][j] = k;                // 放置kif (backtracking(board)) return true; // 如果找到合适一组立刻返回board[i][j] = '.';              // 回溯,撤销k}}return false;  // 9个数都试完了,都不行,那么就返回false}}}return true; // 遍历完没有返回false,说明找到了合适棋盘位置了
}
bool isValid(int row, int col, char val, vector<vector<char>>& board) {for (int i = 0; i < 9; i++) { // 判断行里是否重复if (board[row][i] == val) {return false;}}for (int j = 0; j < 9; j++) { // 判断列里是否重复if (board[j][col] == val) {return false;}}int startRow = (row / 3) * 3;int startCol = (col / 3) * 3;for (int i = startRow; i < startRow + 3; i++) { // 判断9方格里是否重复for (int j = startCol; j < startCol + 3; j++) {if (board[i][j] == val ) {return false;}}}return true;
}
public:void solveSudoku(vector<vector<char>>& board) {backtracking(board);}
};

这篇关于代码随想录算法训练营DAY30|C++回溯算法Part.6|332.重新安排行程、51.N皇后、31.解数独的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/926999

相关文章

使用Redis实现会话管理的示例代码

《使用Redis实现会话管理的示例代码》文章介绍了如何使用Redis实现会话管理,包括会话的创建、读取、更新和删除操作,通过设置会话超时时间并重置,可以确保会话在用户持续活动期间不会过期,此外,展示了... 目录1. 会话管理的基本概念2. 使用Redis实现会话管理2.1 引入依赖2.2 会话管理基本操作

mybatis-plus分表实现案例(附示例代码)

《mybatis-plus分表实现案例(附示例代码)》MyBatis-Plus是一个MyBatis的增强工具,在MyBatis的基础上只做增强不做改变,为简化开发、提高效率而生,:本文主要介绍my... 目录文档说明数据库水平分表思路1. 为什么要水平分表2. 核心设计要点3.基于数据库水平分表注意事项示例

Nginx服务器部署详细代码实例

《Nginx服务器部署详细代码实例》Nginx是一个高性能的HTTP和反向代理web服务器,同时也提供了IMAP/POP3/SMTP服务,:本文主要介绍Nginx服务器部署的相关资料,文中通过代码... 目录Nginx 服务器SSL/TLS 配置动态脚本反向代理总结Nginx 服务器Nginx是一个‌高性

HTML5的input标签的`type`属性值详解和代码示例

《HTML5的input标签的`type`属性值详解和代码示例》HTML5的`input`标签提供了多种`type`属性值,用于创建不同类型的输入控件,满足用户输入的多样化需求,从文本输入、密码输入、... 目录一、引言二、文本类输入类型2.1 text2.2 password2.3 textarea(严格

C++ move 的作用详解及陷阱最佳实践

《C++move的作用详解及陷阱最佳实践》文章详细介绍了C++中的`std::move`函数的作用,包括为什么需要它、它的本质、典型使用场景、以及一些常见陷阱和最佳实践,感兴趣的朋友跟随小编一起看... 目录C++ move 的作用详解一、一句话总结二、为什么需要 move?C++98/03 的痛点⚡C++

JAVA项目swing转javafx语法规则以及示例代码

《JAVA项目swing转javafx语法规则以及示例代码》:本文主要介绍JAVA项目swing转javafx语法规则以及示例代码的相关资料,文中详细讲解了主类继承、窗口创建、布局管理、控件替换、... 目录最常用的“一行换一行”速查表(直接全局替换)实际转换示例(JFramejs → JavaFX)迁移建

Go异常处理、泛型和文件操作实例代码

《Go异常处理、泛型和文件操作实例代码》Go语言的异常处理机制与传统的面向对象语言(如Java、C#)所使用的try-catch结构有所不同,它采用了自己独特的设计理念和方法,:本文主要介绍Go异... 目录一:异常处理常见的异常处理向上抛中断程序恢复程序二:泛型泛型函数泛型结构体泛型切片泛型 map三:文

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

C++构造函数中explicit详解

《C++构造函数中explicit详解》explicit关键字用于修饰单参数构造函数或可以看作单参数的构造函数,阻止编译器进行隐式类型转换或拷贝初始化,本文就来介绍explicit的使用,感兴趣的可以... 目录1. 什么是explicit2. 隐式转换的问题3.explicit的使用示例基本用法多参数构造

C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解

《C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解》:本文主要介绍C++,C#,Rust,Go,Java,Python,JavaScript性能对比全面... 目录编程语言性能对比、核心优势与最佳使用场景性能对比表格C++C#RustGoJavapythonjav