代码随想录算法训练营DAY30|C++回溯算法Part.6|332.重新安排行程、51.N皇后、31.解数独

本文主要是介绍代码随想录算法训练营DAY30|C++回溯算法Part.6|332.重新安排行程、51.N皇后、31.解数独,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 332.重新安排行程
    • 思路
      • 死循环的问题
      • 记录映射关系解决死循环并解决字母序问题
    • 伪代码实现
    • CPP代码
  • 51.N皇后
    • 思路
    • 伪代码实现
    • CPP代码
  • 31.解数独
    • 伪代码实现
    • CPP代码

332.重新安排行程

力扣题目链接

文章讲解:332.重新安排行程

状态:题目要求所有机票都必须用一次且只能用一次

其实,深搜和回溯本来就是相关联的,他们经常被放到一起来讨论。

深度优先搜索是一种遍历或搜索算法,它从一个节点开始,尽可能深地搜索树或图的分支。在每个节点上,DFS会选择一个未被访问过的邻接节点继续搜索,直到到达一个没有未被访问过的邻接节点的节点,然后回溯到上一个节点继续搜索。这个过程会一直进行,直到所有节点都被访问过。

那么现在我们来讨论本题的五个难点,做完题目之后应当回答:

  1. 一个行程中,如果航班处理不好容易变成一个圈,成为死循环
  2. 有多种解法,字母序靠前排在前面,应该如何记录映射关系呢?
  3. 使用回溯法的话,终止条件是什么呢?
  4. 搜索的过程中,如何遍历一个机场所对应的所有机场。

思路

首先一个基本的思路应该是什么样的呢?也就是如何绘制树形结构图:

死循环的问题

记录映射关系解决死循环并解决字母序问题

我们在本题中,首先就涉及到映射关系的选型,这里先给出答案:

unordered_map<出发机场, map<到达机场, 航班次数>> targets

一个机场要映射多个机场,机场之间要靠字母序排列。

所以一个机场映射多个机场我们使用unordered_map

机场之间靠字母序map\multimap\multiset

所以映射关系有

unordered_map<string, multiset<string>> targets;
unordered_map<string, map<string, int>> targets

本题中,为了防止搜索过程没有及时删除目的机场陷入死循环,同时,遍历multiset的时候如果删除元素会导致迭代器失效,为了使思路更加简单我们使用第二个。

再遍历 unordered_map<出发机场, map<到达机场, 航班次数>> targets的过程中,可以使用"航班次数"这个字段的数字做相应的增减,来标记到达机场是否使用过了。

如果“航班次数”大于零,说明目的地还可以飞,如果“航班次数”等于零说明目的地不能飞了,而不用对集合做删除元素或者增加元素的操作。

伪代码实现

  • 初始化结果集和映射关系
for (const vector<string>& vec : tickets) {target[vec[0]][vec[1]]++;	//记录映射关系
}
result.push_back("JFK");	//起始机场
  • 递归函数参数:

    • 使用unordered_map<string, map<string, int>> targets; 来记录航班的映射关系,定义为全局变量。
    • 参数里还需要ticketNum,表示有多少个航班(终止条件会用上)。
    • 返回值用bool,因为我们只需要找到一个行程,也就是说找到在树形结构中唯一的一条通向叶子结点的路线就返回!
    // unordered_map<出发机场, map<到达机场, 航班次数>> targets
    unordered_map<string, map<string, int>> targets;
    bool backtracking(int ticketNum, vector<string>& result) {
    }
    
  • 递归终止条件:输入: [[“MUC”, “LHR”], [“JFK”, “MUC”], [“SFO”, “SJC”], [“LHR”, “SFO”]] ,这是有4个航班,那么只要找出一种行程,行程里的机场个数是5就可以了。

    所以终止条件是:我们回溯遍历的过程中,遇到的机场个数,如果达到了(航班数量+1),那么我们就找到了一个行程,把所有航班串在一起了。

    if (result.size() == ticketNum + 1){return true;
    }
    
  • 单层搜索的逻辑:

for (pair<const string, int>& target: targets[result[result.size() - 1]]){if (target.second > 0){ //记录到达飞机是否飞过result.push_back(target.first);target.second--;if (backtracking(ticketNum, result)) return true;result.pop_back();target.second++;}
}

CPP代码

class Solution {
private:
// unordered_map<出发机场, map<到达机场, 航班次数>> targets
unordered_map<string, map<string, int>> targets;
bool backtracking(int ticketNum, vector<string>& result) {if (result.size() == ticketNum + 1) {return true;}for (pair<const string, int>& target : targets[result[result.size() - 1]]) {if (target.second > 0 ) { // 记录到达机场是否飞过了result.push_back(target.first);target.second--;if (backtracking(ticketNum, result)) return true;result.pop_back();target.second++;}}return false;
}
public:vector<string> findItinerary(vector<vector<string>>& tickets) {targets.clear();vector<string> result;for (const vector<string>& vec : tickets) {targets[vec[0]][vec[1]]++; // 记录映射关系}result.push_back("JFK"); // 起始机场backtracking(tickets.size(), result);return result;}
};

51.N皇后

力扣题目链接

文章讲解:51.N皇后

视频讲解:这就是传说中的N皇后? 回溯算法安排!| LeetCode:51.N皇后

状态:题目要求每行和没列都不允许有两个皇后,然后两个四十五度角也不能出现两个皇后。

本题首先第一个难点就是:

  • 一个棋盘,我们要搜索的是一个二维数组,这应该怎么弄?
  • 树形结构咋画?

看完全部解答后,再回答这两个问题。

思路

以3X3为例:

从图中,可以看出,二维矩阵中矩阵的高就是这棵树的高度矩阵的宽就是树形结构中每一个节点的宽度

所以到这里就可以确定,只要搜索到了树的叶子节点,说明就找到了皇后们的合理位置了

伪代码实现

  • 递归函数参数:用全局变量result来记录最终结果,参数n是棋盘的大小,然后用row来记录当前遍历到棋盘的第几层了。
vector<vector<string>> result;
void backtracking(int n, int row, vector<string>& chessboard) {
  • 递归终止条件:前文说过只要搜索到了树的叶子节点,说明就找到了皇后们的合理位置了
if (row == n) {result.push_back(chessboard);return ;
}
  • 单层搜索逻辑

    • 递归深度就是row控制棋盘的行,每一层里for循环的col控制棋盘的列,一行一列,确定了放置皇后的位置。
    • 每次都是要从新的一行的起始位置开始搜,所以都是从0开始。
    for (int col = 0; col < n; col++){if (Valid(row, col, chessboard, n)){//验证合法chessboard[row][col] = 'Q'; //放置皇后backtracking(n, row + 1, chessboard);chessboard[row][col] = '.'; //回溯,撤销皇后}
    }
    
  • 验证棋盘是否合法:不能同行;不能同列;不能同斜线(45度和135度)

    • 在单层搜索的过程中,每一层递归,只会选for循环(也就是同一行)里的一个元素,所以行不用检查
bool isValid(int row, int col, vector<string>& chessboard, int n) {// 检查列for (int i = 0; i < row; i++) { if (chessboard[i][col] == 'Q') {return false;}}// 检查 45度for (int i = row - 1, j = col - 1; i >=0 && j >= 0; i--, j--) {if (chessboard[i][j] == 'Q') {return false;}}// 检查 135度for(int i = row - 1, j = col + 1; i >= 0 && j < n; i--, j++) {if (chessboard[i][j] == 'Q') {return false;}}return true;
}

CPP代码

class Solution {
private:vector<vector<string>> result;// n 为输入的棋盘大小// row 是当前递归到棋盘的第几行了void backtracking(int n, int row, vector<string>& chessboard) {if (row == n) {result.push_back(chessboard);return;}for (int col = 0; col < n; col++) {if (isValid(row, col, chessboard, n)) { // 验证合法就可以放chessboard[row][col] = 'Q'; // 放置皇后backtracking(n, row + 1, chessboard);chessboard[row][col] = '.'; // 回溯,撤销皇后}}}bool isValid(int row, int col, vector<string>& chessboard, int n) {// 检查列for (int i = 0; i < row; i++) { // 这是一个剪枝if (chessboard[i][col] == 'Q') {return false;}}// 检查 45度角是否有皇后for (int i = row - 1, j = col - 1; i >=0 && j >= 0; i--, j--) {if (chessboard[i][j] == 'Q') {return false;}}// 检查 135度角是否有皇后for(int i = row - 1, j = col + 1; i >= 0 && j < n; i--, j++) {if (chessboard[i][j] == 'Q') {return false;}}return true;}
public:vector<vector<string>> solveNQueens(int n) {result.clear();std::vector<std::string> chessboard(n, std::string(n, '.'));backtracking(n, 0, chessboard);return result;}
};

31.解数独

力扣题目链接

文章讲解:31.解数独

视频讲解:回溯算法二维递归?解数独不过如此!| LeetCode:37. 解数独

状态:仅做记录

数独是一个典型的递归、回溯游戏

这里与N皇后不同的就是,棋盘的每一个位置都要放一个数字(而N皇后是一行只放一个皇后),并检查数字是否合法,解数独的树形结构要比N皇后更宽更深

树形结构如图

2020111720451790-20230310131816104

伪代码实现

  • 递归函数以及参数:

因为解数独找到一个符合的条件(就在树的叶子节点上)立刻就返回,相当于找从根节点到叶子节点一条唯一路径,所以需要使用bool返回值

bool backtracking(vector<vector<char>>& board)
  • 递归终止条件:本题不需要终止条件,解数独是要遍历整个树形结构寻找可能的叶子节点就立刻返回。

本题中的终止条件全部放到单层递归的逻辑里面,因为递归的下一层的棋盘一定比上一层的棋盘多一个数,等数填满了棋盘自然就终止(填满当然好了,说明找到结果了),所以不需要终止条件!

在一个棋盘中如果出现了永远填不满的情况,我们也会在单层递归里面去return false

  • 单层递归逻辑

我们需要一个二维递归,一个遍历行,一个遍历列。如果一行一列确定下来了,在某个格子常识了9个数都不行,就说明该数独问题无解,可以直接return false

bool backtracking(vector<vector<char>>& board) {for (int i = 0; i < board.size(); i++) {        // 遍历行for (int j = 0; j < board[0].size(); j++) { // 遍历列if (board[i][j] != '.') continue;for (char k = '1'; k <= '9'; k++) {     // (i, j) 这个位置放k是否合适if (isValid(i, j, k, board)) {board[i][j] = k;                // 放置kif (backtracking(board)) return true; // 如果找到合适一组立刻返回board[i][j] = '.';              // 回溯,撤销k}}return false;                           // 9个数都试完了,都不行,那么就返回false}}return true; // 遍历完没有返回false,说明找到了合适棋盘位置了
}
  • 判断合法性:同行是否重复,同列是否重复,9宫格里是否重复
bool isValid(int row, int col, char val, vector<vector<char>>& board) {for (int i = 0; i < 9; i++) { // 判断行里是否重复if (board[row][i] == val) {return false;}}for (int j = 0; j < 9; j++) { // 判断列里是否重复if (board[j][col] == val) {return false;}}int startRow = (row / 3) * 3;int startCol = (col / 3) * 3;for (int i = startRow; i < startRow + 3; i++) { // 判断9方格里是否重复for (int j = startCol; j < startCol + 3; j++) {if (board[i][j] == val ) {return false;}}}return true;
}

CPP代码

class Solution {
private:
bool backtracking(vector<vector<char>>& board) {for (int i = 0; i < board.size(); i++) {        // 遍历行for (int j = 0; j < board[0].size(); j++) { // 遍历列if (board[i][j] == '.') {for (char k = '1'; k <= '9'; k++) {     // (i, j) 这个位置放k是否合适if (isValid(i, j, k, board)) {board[i][j] = k;                // 放置kif (backtracking(board)) return true; // 如果找到合适一组立刻返回board[i][j] = '.';              // 回溯,撤销k}}return false;  // 9个数都试完了,都不行,那么就返回false}}}return true; // 遍历完没有返回false,说明找到了合适棋盘位置了
}
bool isValid(int row, int col, char val, vector<vector<char>>& board) {for (int i = 0; i < 9; i++) { // 判断行里是否重复if (board[row][i] == val) {return false;}}for (int j = 0; j < 9; j++) { // 判断列里是否重复if (board[j][col] == val) {return false;}}int startRow = (row / 3) * 3;int startCol = (col / 3) * 3;for (int i = startRow; i < startRow + 3; i++) { // 判断9方格里是否重复for (int j = startCol; j < startCol + 3; j++) {if (board[i][j] == val ) {return false;}}}return true;
}
public:void solveSudoku(vector<vector<char>>& board) {backtracking(board);}
};

这篇关于代码随想录算法训练营DAY30|C++回溯算法Part.6|332.重新安排行程、51.N皇后、31.解数独的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/926999

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

c++中std::placeholders的使用方法

《c++中std::placeholders的使用方法》std::placeholders是C++标准库中的一个工具,用于在函数对象绑定时创建占位符,本文就来详细的介绍一下,具有一定的参考价值,感兴... 目录1. 基本概念2. 使用场景3. 示例示例 1:部分参数绑定示例 2:参数重排序4. 注意事项5.