渐进时间复杂度O(n)

2024-04-22 20:36
文章标签 复杂度 时间 渐进

本文主要是介绍渐进时间复杂度O(n),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基本操作数

       算法的运行速度受计算机性能的影响,所以通常考虑算法效率的不是算法运行的实际用时,而是算法运行所需要进行的基本操作的数量。

       像加减乘除、访问变量、给变量赋值等都可以看作基本操作。对基本操作的计数或是估测可以作为评判算法用时的指标。

时间复杂度

       在算法竞赛中,我们衡量一个算法的效率时,最重要的不是看它在某个数据规模下的用时,而是看它的用时随数据规模而增长的趋势,即 时间复杂度。

        时间复杂度是指算法运行时间与问题规模之间的关系,通常用大 O 表示法来表示。

     常见的时间复杂度有O(1), O(logn), O(n), O(nlogn), O(n^2 ), O(2^n)等,其中 O(1) 表示算法的运行时间不随问题规模变化而改变,而O(2^n ) 则表示算法的运行时间随问题规模n呈指数级增长。

 变化趋势意味着我们不用纠结于具体的操作次数和n之间的精确对应关系,也就是不用看具体的函数的参数是什么,而只用看随着数据范围的增大,操作次数的变化是属于哪一类函数。

       例如:是常数,还是线性的,还是对数的,还是nlogn的,还是n^2的,还是2^n的,还是阶乘n!的。原因是当n变得非常大的时候,这些不同类型的函数之间的差异值才是明显的,而同一种类型之间的参数不同带来的差异就显得微不足道了,可以忽略不计。这也是为什么O(1)和O(3) 都被称作 O(1)。

例子
for (int i = 1; i <= n; i++)
{j = i;j++;
}

   这段代码的时间复杂度O(n)的。分析代码的执行次数,第1行中i=1执行1次, i<=ni++分别执行n次,第2行、第3行分别执行n次,所以这段代码总共执行4n+1次。从这个结果可以看出,这个算法的耗时是随着n的变化而变化。如果n无限大的时候,1+4n 中的常量1就没有意义了,倍数4的意义也不大。因此时间复杂度直接简化为O(n)。

计算次数

       O(n)、O(logn)、O(n​)、O(nlogn)随着n的增加,复杂度提升不大,因此这些复杂度属于效率高的算法,反观O(2^n)和O(n!)当n增加到50时,复杂度就突破十位数了,这种效率极差的复杂度最好不要出现在程序中。(tips:通常计算机每秒可以计算的次数大约是10的8次方)

最坏、最好、平均

       在进行时间复杂度分析时,需要考虑算法的最好、最坏、平均情况时间复杂度。

      最好情况时间复杂度是指算法在最优输入情况下的运行时间复杂度,即在所有可能的输入情况中,算法所需的最少时间。例如,对于二分查找算法来说,在目标元素为中间元素的情况下,查找时间为 O(1)。

      最坏情况时间复杂度是指算法在最劣输入情况下的运行时间复杂度,即在所有可能的输入情况中,算法所需的最长时间。例如,对于冒泡排序算法来说,最坏情况是需要 O(n^2) 的时间复杂度。

     平均情况时间复杂度是指算法在所有可能输入情况下的平均运行时间复杂度。对于某些算法来说,平均情况时间复杂度更能反映算法的运行效率,例如快速排序算法的平均情况时间复杂度为 O(nlogn),而最坏时间复杂度是 O(n^2)。

       我们通常所说的时间复杂度大 O是指算法的最坏时间复杂度。这是因为最坏时间复杂度能够给出算法的最长运行时间,可以帮助我们评估算法的性能并预估程序的执行时间。此外,最坏时间复杂度也是一种更保守的衡量指标,即使算法在最坏情况下表现较好,也能够保证算法的性能不会低于最坏时间复杂度。

常见的时间复杂度
常数阶O(1)

       代码执行次数是一个常数,不随n的变化而变化,那这个代码的时间复杂度就都是O(1),如下的代码中虽然含有for循环,但循环次数是100次,不随问题规模变化而变化,因此是常数级O(1)的时间复杂度:

for(int i = 1; i <= 100; i++)
{cnt += i;
}
线性阶O(n)

       这段代码,for循环里面的代码会执行n遍,因此它消耗的时间是随着n的变化而变化的,因此这类代码都可以用O(n)来表示它的时间复杂度。

for(int i = 1; i <= n; i++)
{cnt += i;
}
对数阶O(logn)

        同样是for循环,但这段代码的时间复杂度是O(logn),因此不能单纯认为for循环就一定是O(n)的。

for(int i = 1; i <= n; i *= 2)
{cnt++;
} 
线性对数阶O(nlogn)

       线性对数阶O(nlogn) 其实非常容易理解,将时间复杂度为O(logn) 的代码循环n遍的话,那么它的时间复杂度就是 n×O(logn)。

就拿上面的代码加一点修改来举例:

for(int i = 1; i <= n; i++)
{     for(int j = 1; j <= n; j *= 2){cnt++;}
}

 

平方阶O(n^2 )

平方阶O(n^2)就更容易理解了,如果把O(n)的代码再嵌套循环一遍,它的时间复杂度就是 O(n^2) 了。

for(int i = 1; i <= n; i++)
{for(int j = 1; j <= n; j++){cnt++; } 
}
阶乘阶O(n!)

 指数阶O(2^n)
void f(int n)
{if(n==1){return 1;}else{return f(n-1)+f(n-2);}
}

彩蛋
#include <bits/stdc++.h>
using namespace std;
int main()
{cout<<"O(1):"<<endl;cout<<"int n=100;"<<endl;cout<<"int a=n;"<<endl;cout<<endl;cout<<"O(logn):"<<endl;cout<<"while(i<=n)"<<endl;cout<<"{"<<endl;cout<<"   i*=2;"<<endl;cout<<"}"<<endl;cout<<endl;cout<<"O(n):"<<endl;cout<<"for(int i=1;i<=n;i++)"<<endl;cout<<"{"<<endl;cout<<"   cout<<1;"<<endl;cout<<"}"<<endl;cout<<endl;cout<<"O(nlogn)(logn重复n遍):"<<endl;cout<<"for(int i = 1; i <= n; i++)"<<endl;cout<<"{"<<endl;     cout<<"    for(int j = 1; j <= n; j *= 2)"<<endl;cout<<"    {"<<endl;cout<<"         cnt++;"<<endl;cout<<"    }"<<endl;cout<<"}"<<endl;cout<<endl;cout<<"O(n*n):"<<endl;cout<<"for(int i=1;i<=n;i++)"<<endl;cout<<"{"<<endl;cout<<"   for(int j=1;j<=n;j++)"<<endl;cout<<"   {"<<endl;cout<<"      cout<<1;"<<endl;cout<<"   }"<<endl;cout<<"}"<<endl;cout<<endl;cout<<"O(2^n):"<<endl;cout<<"void f(int n)"<<endl;cout<<"{"<<endl;cout<<"   if(n==1)"<<endl;cout<<"   {"<<endl;cout<<"       return 1;"<<endl;cout<<"   }"<<endl;cout<<"   else"<<endl;cout<<"   {"<<endl;cout<<"       return f(n-1)+f(n-2);"<<endl;cout<<"   }"<<endl;cout<<"}"<<endl;return 0;
}
learn more!!!

Big-O Algorithm Complexity Cheat Sheet (Know Thy Complexities!) @ericdrowell

这篇关于渐进时间复杂度O(n)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/926794

相关文章

服务器集群同步时间手记

1.时间服务器配置(必须root用户) (1)检查ntp是否安装 [root@node1 桌面]# rpm -qa|grep ntpntp-4.2.6p5-10.el6.centos.x86_64fontpackages-filesystem-1.41-1.1.el6.noarchntpdate-4.2.6p5-10.el6.centos.x86_64 (2)修改ntp配置文件 [r

MiniGPT-3D, 首个高效的3D点云大语言模型,仅需一张RTX3090显卡,训练一天时间,已开源

项目主页:https://tangyuan96.github.io/minigpt_3d_project_page/ 代码:https://github.com/TangYuan96/MiniGPT-3D 论文:https://arxiv.org/pdf/2405.01413 MiniGPT-3D在多个任务上取得了SoTA,被ACM MM2024接收,只拥有47.8M的可训练参数,在一张RTX

批处理以当前时间为文件名创建文件

批处理以当前时间为文件名创建文件 批处理创建空文件 有时候,需要创建以当前时间命名的文件,手动输入当然可以,但是有更省心的方法吗? 假设我是 windows 操作系统,打开命令行。 输入以下命令试试: echo %date:~0,4%_%date:~5,2%_%date:~8,2%_%time:~0,2%_%time:~3,2%_%time:~6,2% 输出类似: 2019_06

【MRI基础】TR 和 TE 时间概念

重复时间 (TR) 磁共振成像 (MRI) 中的 TR(重复时间,repetition time)是施加于同一切片的连续脉冲序列之间的时间间隔。具体而言,TR 是施加一个 RF(射频)脉冲与施加下一个 RF 脉冲之间的持续时间。TR 以毫秒 (ms) 为单位,主要控制后续脉冲之前的纵向弛豫程度(T1 弛豫),使其成为显著影响 MRI 中的图像对比度和信号特性的重要参数。 回声时间 (TE)

LeetCode:64. 最大正方形 动态规划 时间复杂度O(nm)

64. 最大正方形 题目链接 题目描述 给定一个由 0 和 1 组成的二维矩阵,找出只包含 1 的最大正方形,并返回其面积。 示例1: 输入: 1 0 1 0 01 0 1 1 11 1 1 1 11 0 0 1 0输出: 4 示例2: 输入: 0 1 1 0 01 1 1 1 11 1 1 1 11 1 1 1 1输出: 9 解题思路 这道题的思路是使用动态规划

O(n)时间内对[0..n^-1]之间的n个数排序

题目 如何在O(n)时间内,对0到n^2-1之间的n个整数进行排序 思路 把整数转换为n进制再排序,每个数有两位,每位的取值范围是[0..n-1],再进行基数排序 代码 #include <iostream>#include <cmath>using namespace std;int n, radix, length_A, digit = 2;void Print(int *A,

算法复杂度的简单介绍

算法复杂度是衡量算法执行效率和资源消耗的指标,通常分为时间复杂度和空间复杂度。时间复杂度评估算法执行所需时间随输入规模的变化,空间复杂度评估算法占用内存的增长情况。复杂度通常用大O符号来表示,它描述了最坏情况下的增长速率。 1. 时间复杂度 时间复杂度表示算法执行所需时间随输入规模 nnn 的变化关系。常见的时间复杂度如下(从快到慢): a. 常数时间:O(1) 不管输入大小如何,算法总是

LeetCode:3177. 求出最长好子序列 II 哈希表+动态规划实现n*k时间复杂度

3177. 求出最长好子序列 II 题目链接 题目描述 给你一个整数数组 nums 和一个非负整数k 。如果一个整数序列 seq 满足在下标范围 [0, seq.length - 2] 中 最多只有 k 个下标i满足 seq[i] != seq[i + 1] ,那么我们称这个整数序列为好序列。请你返回 nums中好子序列的最长长度。 实例1: 输入:nums = [1,2,1,1,3],

未雨绸缪:环保专包二级资质续期工程师招聘时间策略

对于环保企业而言,在二级资质续期前启动工程师招聘的时间规划至关重要。考虑到招聘流程的复杂性、企业内部需求的变化以及政策标准的更新,建议环保企业在二级资质续期前至少提前6至12个月启动工程师招聘工作。这个时间规划可以细化为以下几个阶段: 一、前期准备阶段(提前6-12个月) 政策与标准研究: 深入研究国家和地方关于环保二级资质续期的最新政策、法规和标准,了解对工程师的具体要求。评估政策变化可

用Python实现时间序列模型实战——Day 14: 向量自回归模型 (VAR) 与向量误差修正模型 (VECM)

一、学习内容 1. 向量自回归模型 (VAR) 的基本概念与应用 向量自回归模型 (VAR) 是多元时间序列分析中的一种模型,用于捕捉多个变量之间的相互依赖关系。与单变量自回归模型不同,VAR 模型将多个时间序列作为向量输入,同时对这些变量进行回归分析。 VAR 模型的一般形式为: 其中: ​ 是时间  的变量向量。 是常数向量。​ 是每个时间滞后的回归系数矩阵。​ 是误差项向量,假