详细解读ControlNet作者最新力作:透明图层的生成模型LayerDiffusion

本文主要是介绍详细解读ControlNet作者最新力作:透明图层的生成模型LayerDiffusion,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Diffusion models代码解读:入门与实战

前言:ControlNet的作者Lvmin Zhang的新作品LayerDiffusion,可以用于生成四通道带有透明图层的图片,这对于设计和落地是巨大的利好,因为业务场景下会有很多背景替换、人物替换的需求,从此告别抠图!这篇博客详细解读背后的原理,并解读代码和复现实验。

目录

贡献概述

方法详解

当前问题

整理流程

Loss约束

多透明图层生成

数据收集

效果复现

论文和代码 

贡献概述

生成透明图像的方法,可以生成单个透明图像或多个透明层。理论上任何LDM都可以通过这种方法对其进行微调转换为透明图像生成器。

该方法学习了一个“潜在透明度”,将 alpha 通道透明度编码到预训练的潜在扩散模型的潜在流形中,通过调节添加的透明度作为潜在偏移量来保持生成质量,以避免破坏潜在分布,对预训练模型的原始潜在分布的变化最小。

方法详解

当前问题

1、透明图层的图像没有大规模数据集。

2、SD对潜在空间非常敏感,对潜在空间的数据分布稍微调整也会严重影响推理效果。所以直接微调让其生成透明图像会破坏原有的潜在空间分布。

整理流程

先将透明图像(四通道)分解成RGB图像(三通道)和alpha通道的图像(单通道),将RGB图像变成Premultiplied图片经过SD编码器与潜在透明图像相加,生成的Premultiplied图片(四通道),经过解码器得到alpha通道的图像和RGB图像(三通道)。

透明编码器和透明解码器:从头训练一个专门针对透明图像的编码器,这个编码器的输入不仅有alpha通道的图像,还有像素空间的图像。透明解码器的输入是调整后的潜在噪声和重建后的RGB图像。

Loss约束

身份损失:因为在原有的潜在分布上加上了alpha通道的噪声会破坏原有的噪声分布,所以用一个身份损失约束对潜在空间偏移量的修改。

重建损失:用重建后的alpha通道图像和重建后的RGB图像与输入图像计算损失:

鉴别损失:引入PatchGAN的鉴别器损失:

最终的损失由三个损失加权得到:

默认情况下使用λrecon = 1, λidentity = 1, λdisc = 0.01

微调损失:由于调整后的潜在空间特征分布,与原始预训练的潜在空间特征分布分布保持一致。因此可以直接在调整后的潜在空间上对Stable Diffusion进行微调。微调公式和大部分扩散模型微调的公式一致,唯一变化是输入参数不一致:

多透明图层生成

前景的噪声潜在图像被表示为xf,背景的噪声潜在图像被表示为xb。然后训练了两个LoRAs,一个用于前景(由θf参数化),另一个用于背景(由θb参数化),以去噪这两个编码后的图像。

这两个模型之间的注意力部分的权重共享,训练目标相互独立:

为了实现多个层的一致生成,研究者们在扩散模型的每个注意力层中,将“前景潜在空间向量”和“背景潜在空间向量”进行拼接,使得两个独立的扩散过程可以合并为一个共同优化的大型模型。合并后的噪声被表示为:

数据收集

使用human-in-the-loop(人类会全程参与数据的筛选和编辑)的方法,共收集了1M 透明图像,并将这些单层透明图层样本的数据扩展到多层样本。扩展的方法如下:

用GPT生成前景+背景的提示词,前景提示通过训练好的透明图像生成器处理,以获得透明图像。使用SDXL修复模型将所有Alpha值小于1的像素修复,以获得中间图像。反转Alpha掩模,进行腐蚀操作,然后再次使用背景提示进行修复,以获得背景层。重复这个过程1M次,以生成大约1M对层。

效果复现

论文和代码

https://github.com/KaustubhPatange/Diffuser-layerdiffuse

这篇关于详细解读ControlNet作者最新力作:透明图层的生成模型LayerDiffusion的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/926064

相关文章

如何为Yarn配置国内源的详细教程

《如何为Yarn配置国内源的详细教程》在使用Yarn进行项目开发时,由于网络原因,直接使用官方源可能会导致下载速度慢或连接失败,配置国内源可以显著提高包的下载速度和稳定性,本文将详细介绍如何为Yarn... 目录一、查询当前使用的镜像源二、设置国内源1. 设置为淘宝镜像源2. 设置为其他国内源三、还原为官方

最详细安装 PostgreSQL方法及常见问题解决

《最详细安装PostgreSQL方法及常见问题解决》:本文主要介绍最详细安装PostgreSQL方法及常见问题解决,介绍了在Windows系统上安装PostgreSQL及Linux系统上安装Po... 目录一、在 Windows 系统上安装 PostgreSQL1. 下载 PostgreSQL 安装包2.

Mysql用户授权(GRANT)语法及示例解读

《Mysql用户授权(GRANT)语法及示例解读》:本文主要介绍Mysql用户授权(GRANT)语法及示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql用户授权(GRANT)语法授予用户权限语法GRANT语句中的<权限类型>的使用WITH GRANT

MySql match against工具详细用法

《MySqlmatchagainst工具详细用法》在MySQL中,MATCH……AGAINST是全文索引(Full-Textindex)的查询语法,它允许你对文本进行高效的全文搜素,支持自然语言搜... 目录一、全文索引的基本概念二、创建全文索引三、自然语言搜索四、布尔搜索五、相关性排序六、全文索引的限制七

python中各种常见文件的读写操作与类型转换详细指南

《python中各种常见文件的读写操作与类型转换详细指南》这篇文章主要为大家详细介绍了python中各种常见文件(txt,xls,csv,sql,二进制文件)的读写操作与类型转换,感兴趣的小伙伴可以跟... 目录1.文件txt读写标准用法1.1写入文件1.2读取文件2. 二进制文件读取3. 大文件读取3.1

Linux内核参数配置与验证详细指南

《Linux内核参数配置与验证详细指南》在Linux系统运维和性能优化中,内核参数(sysctl)的配置至关重要,本文主要来聊聊如何配置与验证这些Linux内核参数,希望对大家有一定的帮助... 目录1. 引言2. 内核参数的作用3. 如何设置内核参数3.1 临时设置(重启失效)3.2 永久设置(重启仍生效

IDEA自动生成注释模板的配置教程

《IDEA自动生成注释模板的配置教程》本文介绍了如何在IntelliJIDEA中配置类和方法的注释模板,包括自动生成项目名称、包名、日期和时间等内容,以及如何定制参数和返回值的注释格式,需要的朋友可以... 目录项目场景配置方法类注释模板定义类开头的注释步骤类注释效果方法注释模板定义方法开头的注释步骤方法注

如何在Mac上安装并配置JDK环境变量详细步骤

《如何在Mac上安装并配置JDK环境变量详细步骤》:本文主要介绍如何在Mac上安装并配置JDK环境变量详细步骤,包括下载JDK、安装JDK、配置环境变量、验证JDK配置以及可选地设置PowerSh... 目录步骤 1:下载JDK步骤 2:安装JDK步骤 3:配置环境变量1. 编辑~/.zshrc(对于zsh

Python如何自动生成环境依赖包requirements

《Python如何自动生成环境依赖包requirements》:本文主要介绍Python如何自动生成环境依赖包requirements问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录生成当前 python 环境 安装的所有依赖包1、命令2、常见问题只生成当前 项目 的所有依赖包1、

python3 gunicorn配置文件的用法解读

《python3gunicorn配置文件的用法解读》:本文主要介绍python3gunicorn配置文件的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录python3 gunicorn配置文件配置文件服务启动、重启、关闭启动重启关闭总结python3 gun