深度学习之视觉特征提取器——VGG系列

2024-04-22 13:44

本文主要是介绍深度学习之视觉特征提取器——VGG系列,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

VGG

提出论文:1409.1556.pdf (arxiv.org)

引入

距离VGG网络的提出已经约十年,很难想象在深度学习高速发展的今天,一个模型能够历经十年而不衰。虽然如今已经有VGG的大量替代品,但是笔者研究的一些领域仍然有大量工作选择使用VGG。有人说VGG开创了基于一些基础结构(如Conv,Linear,RNN)进行模型堆叠的开端,但笔者更以为是其对深层次网络的研究和特征提取器这一概念的广泛使用作出了巨大贡献(但并不是首次提出)。深度学习高速发展之外,是硬件算力的高速发展。10年前使用VGG某种意义上也可以看成现如今使用LLM。VGG是由Visual Geometry Group中的两位大佬提出(VGG名字的由来就显而易见了)

模型介绍

请添加图片描述

3×3卷积核

在VGG中,很大的贡献之一是使用了3×3卷积核以替代5×5卷积核、7×7卷积核等。这样的优点有两个:

(1)对相同大小的图像使用更小感受野的卷积,就会导致卷积的层数更多,层数更多意味着对非线性的拟合更好。这一点可以类比于高次函数可以拟合的曲线更多、更逼近。比如 y = a x + b y=ax+b y=ax+b就难以拟合曲线,而 y = ( a x + b ) ( c x + d ) y=(ax+b)(cx+d) y=(ax+b)(cx+d)就可以拟合部分曲线。

(2)对相同大小的图像使用3×3的卷积所需要的参数量更少。如图,如果用作者论文中举的例子就是,对一个7×7的感受野使用3×3的卷积总共需要 3 × ( 3 2 C 2 ) = 27 C 2 3\times(3^2C^2)=27C^2 3×(32C2)=27C2的参数,而使用7×7的卷积核则需要 ( 7 2 C 2 ) = 49 C 2 (7^2C^2)=49C^2 (72C2)=49C2的参数,其中 C C C代表通道数。

补充解释:一个3×3的卷积核参数量是 3 2 3^2 32,如果原始特征有 C C C个通道,输出特征也相应有 C C C个通道,那么每个通道对应相乘就得到 C 2 C^2 C2,而对于一个7×7的感受野,需要分成三个阶段使用3×3的卷积,所以再乘以3。

不同深度的VGG

VGG最常见的有四种模型结构,分别是VGG11,VGG13,VGG16,VGG19,其模型结构分别如下:

请添加图片描述

作者也是通过这四种不同深度的模型验证了更深的网络可以有效提高模型的效果。

代码实现

目前最便捷的方法是使用Pytorch中的torchvision库。

以VGG16举例:

下面是官方给的代码:

from torchvision.io import read_image
from torchvision.models import vgg16, VGG16_Weightsimg = read_image("image.jpg")# Step 1: Initialize model with the best available weights
weights = VGG16_Weights.DEFAULT
model = vgg16(weights=weights)
model.eval()# Step 2: Initialize the inference transforms
preprocess = weights.transforms()# Step 3: Apply inference preprocessing transforms
batch = preprocess(img).unsqueeze(0)# Step 4: Use the model and print the predicted category
prediction = model(batch).squeeze(0).softmax(0)
class_id = prediction.argmax().item()
score = prediction[class_id].item()
category_name = weights.meta["categories"][class_id]
print(f"{category_name}: {100 * score:.1f}%")

如果要封装成一个类,并控制输出的维度,可以使用如下代码:

import torch.nn as nn
import torchvision.models as models
from torchvision.models.vgg import VGG16_Weightsclass VGG16(nn.Module):def __init__(self):super(VGG16, self).__init__()self.vgg = models.vgg16(weights=VGG16_Weights.IMAGENET1K_V1)self.dim_feat = 4096self.vgg.classifier[6] = nn.Linear(4096, self.dim_feat)def forward(self, x):output = self.vgg(x)return output

当然,VGG并不止VGG16可以调用,下面是Pytorch官方给出的表格:

WeightAcc@1Acc@5ParamsGFLOPSRecipe
VGG11_BN_Weights.IMAGENET1K_V170.3789.81132.9M7.61link
VGG11_Weights.IMAGENET1K_V169.0288.628132.9M7.61link
VGG13_BN_Weights.IMAGENET1K_V171.58690.374133.1M11.31link
VGG13_Weights.IMAGENET1K_V169.92889.246133.0M11.31link
VGG16_BN_Weights.IMAGENET1K_V173.3691.516138.4M15.47link
VGG16_Weights.IMAGENET1K_V171.59290.382138.4M15.47link
VGG16_Weights.IMAGENET1K_FEATURESnannan138.4M15.47link
VGG19_BN_Weights.IMAGENET1K_V174.21891.842143.7M19.63link
VGG19_Weights.IMAGENET1K_V172.37690.876143.7M19.63link

这篇关于深度学习之视觉特征提取器——VGG系列的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/925944

相关文章

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;