再论图像变化和频率的关系(使用数学工具)。

2024-04-22 13:44

本文主要是介绍再论图像变化和频率的关系(使用数学工具)。,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

我之前是做了一些探讨,但是没说清楚,现在再看这个问题。

我先提出这个问题。

以以为点列为例,先写成傅里叶级数的形式,不过这里不是三角函数形式,而是指数形式,是一样的。

对f(n)求导,就可以观察变化率了。但是我暂且不这样做,因为我先从直观感受出发。如果f(n+1)-f(n)较大说明了这个位置的像素变化快,那么在三角函数中该如何显示呢?把上图的指数函数看成是三角函数,所以差值f'(n)是跟频率有关,也跟三角级数的幅值F(k)有关。在连续函数的傅里叶级数求导中,如下图所示:

n跟频率有关,确实也说明了这一点。但是问题是在连续函数中,n是无数多个,而f'(x)的值是确定的,到底是多少个频率nk影响了f'(k)的值呢?连续的不好解决,现在看离散的级数的情况。

由于这里是有限个点,所以问题变简单了。

N个频率,只有一个频率k使得Fk*e^{i*2\pi *n*k/N}的绝对值最接近f'(n),然后其余N-1个F(k)作向量加法等于f'(n)。但是这样想无助于问题,那就利用方程组的思想吧。

已知有N个不同频率的正弦函数ck(n)和余弦函数sk(n)建立方程组

\sum_{k=0}^{N-1}Fk*[ck(n)+i*sk(n)]=fn

这样看不方便,用指数函数代替,设为en(k)=ck(n)+i*sk(n),即是

\sum_{k=0}^{N-1}Fk*en,k=fn,写成矩阵形式: E*(F0,F1,...,F(N-1))'=(f0,f1,...,f(N-1))'。

Fk的下标k表示频率,fn的下标n表示位置。

情况本身是这样的,首先是取了fn的N个点,然后由于N确定了矩阵E。所以可以求出来唯一解Fk。

但是问题是若f(m+1)-f(m)较大,则可能只是存在极少数比如l个的kl,跟这个差值非常接近。

E中的(n,k)元是第n行第k列元素,代表在复平面上x轴上的单位向量逆时转旋转2\pikn/N个角度,

可以看出来这是个对称矩阵。我不分析了,网上有傅里叶变换的矩阵分析,是范德蒙矩阵,还是个正交矩阵,也是对称矩阵。

设En表示矩阵的行向量, n是空间域的位置。

现在计算f(n+1)-f(n)=[E(n+1)-E(n)]*F

En看不出来是什么,但是矩阵E具有对称性,所以En(k)=E(k,n), 设Ek=E(k,n),实际上Ek代表的是在空间域上频率为k的一位置n为定义域的正弦函数和余弦函数对。

所以f(n+1)-f(n)=[E(n+1)-E(n)]*F表示: 当f(n)分解为三角函数的时候,变化率为两个相邻的正弦函数和余弦函数对的差值和F的内积。而三角函数早就已经固定了。

反正正弦函数与余弦函数都是在一个周期内,等分成了N个点。

f(n+1)-f(n)=[E(n+1)-E(n)]*E^(-1)*f', 由于E是对称矩阵,且是正定矩阵,则E^(-1)=E。

所以f(n+1)-f(n)=f(n+1)-f(n)。这只能说明我没有推到错误。但是k呢?我希望看到的是关于k的函数。由于对称性En已可以理解为在频率为n的时候,不同位置的三角函数值,Fk的k也可以理解为位置上的权重。所以也可以理解为不同频率上的差值的向量的内积。

所以到底是理解为在位置n和n+1处的两个相同频率的三角函数的差值,还是理解为在频率为n+1和n处的两个相同位置的三角函数的差值。为了不累加频率,那只能理解为Fk是关于位置的权重。但是依然没用。我需要的是在频率为n的时候,减少该频率的F(n)的值或者F(n)附近的值,就能改变位置n的或者附近的变化率。(利用数学工具都无法说明,那我只能从算法看了。)

这篇关于再论图像变化和频率的关系(使用数学工具)。的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/925940

相关文章

详解Vue如何使用xlsx库导出Excel文件

《详解Vue如何使用xlsx库导出Excel文件》第三方库xlsx提供了强大的功能来处理Excel文件,它可以简化导出Excel文件这个过程,本文将为大家详细介绍一下它的具体使用,需要的小伙伴可以了解... 目录1. 安装依赖2. 创建vue组件3. 解释代码在Vue.js项目中导出Excel文件,使用第三

Linux alias的三种使用场景方式

《Linuxalias的三种使用场景方式》文章介绍了Linux中`alias`命令的三种使用场景:临时别名、用户级别别名和系统级别别名,临时别名仅在当前终端有效,用户级别别名在当前用户下所有终端有效... 目录linux alias三种使用场景一次性适用于当前用户全局生效,所有用户都可调用删除总结Linux

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存