【opencv GPU】测测你的opencv-GPU 版本每秒处理帧数 大概多少?

2024-04-22 02:20

本文主要是介绍【opencv GPU】测测你的opencv-GPU 版本每秒处理帧数 大概多少?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在使用OpenCV的cv2.dnn.Net类从ONNX模型文件创建网络时,如果你想要启用GPU加速,你需要确保OpenCV在安装时已经包含了GPU支持。这通常意味着你需要从源代码编译OpenCV,并确保在编译过程中启用了CUDA支持。

以下是如何在OpenCV中启用GPU加速的步骤:

1、确保OpenCV已正确安装并支持GPU:
如果你已经从源代码编译了OpenCV并启用了CUDA支持,那么你的OpenCV版本应该已经支持GPU加速。
你可以通过运行以下Python代码来检查OpenCV是否支持CUDA:

import cv2
print(cv2.cuda.getCudaEnabledDeviceCount())

如果输出是一个大于0的数字,那么OpenCV已经启用了CUDA支持。

2、加载ONNX模型并设置OpenCV以使用GPU:
使用cv2.dnn.readNetFromONNX加载ONNX模型。
将OpenCV的DNN后端设置为CUDA,以便在GPU上执行推理。

import cv2# 加载ONNX模型
model = cv2.dnn.readNetFromONNX('path/to/model.onnx')# 设置OpenCV DNN后端为CUDA
model.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
model.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)

3、例子
为了得到一个具体的数值,你需要测试你的特定模型和GPU配置。你可以使用OpenCV的DNN模块来加载模型并使用GPU进行推理,然后计算处理一定数量帧所需的时间,最后用这个时间来计算FPS。

以下是一个简单的例子,展示了如何使用OpenCV的DNN模块和GPU来计算FPS:

import cv2
import time# 初始化帧计数器和开始时间
frame_count = 0
start_time = time.time()# 加载模型(确保OpenCV已编译为支持CUDA)
net = cv2.dnn.readNet('path/to/your/model.onnx')
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)# 打开视频文件或摄像头
cap = cv2.VideoCapture('path/to/your/video.mp4')  # 或者使用摄像头: cv2.VideoCapture(0)# 检查视频是否成功打开
if not cap.isOpened():print("Error: Could not open video.")exit()# 循环读取视频帧
while True:ret, frame = cap.read()if not ret:break# 准备输入数据blob = cv2.dnn.blobFromImage(frame, size=(640, 640), swapRB=True, crop=False)# 执行推理net.setInput(blob)net.forward()# 更新帧计数器frame_count += 1# 每100帧打印一次FPSif frame_count % 100 == 0:elapsed_time = time.time() - start_timefps = frame_count / elapsed_timeprint(f"FPS: {fps:.2f}")# 释放视频流和窗口
cap.release()
cv2.destroyAllWindows()

这篇关于【opencv GPU】测测你的opencv-GPU 版本每秒处理帧数 大概多少?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/924605

相关文章

使用C++将处理后的信号保存为PNG和TIFF格式

《使用C++将处理后的信号保存为PNG和TIFF格式》在信号处理领域,我们常常需要将处理结果以图像的形式保存下来,方便后续分析和展示,C++提供了多种库来处理图像数据,本文将介绍如何使用stb_ima... 目录1. PNG格式保存使用stb_imagephp_write库1.1 安装和包含库1.2 代码解

java中不同版本JSONObject区别小结

《java中不同版本JSONObject区别小结》本文主要介绍了java中不同版本JSONObject区别小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录1. FastjsON2. Jackson3. Gson4. org.json6. 总结在Jav

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

Spring Boot 整合 ShedLock 处理定时任务重复执行的问题小结

《SpringBoot整合ShedLock处理定时任务重复执行的问题小结》ShedLock是解决分布式系统中定时任务重复执行问题的Java库,通过在数据库中加锁,确保只有一个节点在指定时间执行... 目录前言什么是 ShedLock?ShedLock 的工作原理:定时任务重复执行China编程的问题使用 Shed

Redis如何使用zset处理排行榜和计数问题

《Redis如何使用zset处理排行榜和计数问题》Redis的ZSET数据结构非常适合处理排行榜和计数问题,它可以在高并发的点赞业务中高效地管理点赞的排名,并且由于ZSET的排序特性,可以轻松实现根据... 目录Redis使用zset处理排行榜和计数业务逻辑ZSET 数据结构优化高并发的点赞操作ZSET 结

微服务架构之使用RabbitMQ进行异步处理方式

《微服务架构之使用RabbitMQ进行异步处理方式》本文介绍了RabbitMQ的基本概念、异步调用处理逻辑、RabbitMQ的基本使用方法以及在SpringBoot项目中使用RabbitMQ解决高并发... 目录一.什么是RabbitMQ?二.异步调用处理逻辑:三.RabbitMQ的基本使用1.安装2.架构

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

golang1.23版本之前 Timer Reset方法无法正确使用

《golang1.23版本之前TimerReset方法无法正确使用》在Go1.23之前,使用`time.Reset`函数时需要先调用`Stop`并明确从timer的channel中抽取出东西,以避... 目录golang1.23 之前 Reset ​到底有什么问题golang1.23 之前到底应该如何正确的

mysql外键创建不成功/失效如何处理

《mysql外键创建不成功/失效如何处理》文章介绍了在MySQL5.5.40版本中,创建带有外键约束的`stu`和`grade`表时遇到的问题,发现`grade`表的`id`字段没有随着`studen... 当前mysql版本:SELECT VERSION();结果为:5.5.40。在复习mysql外键约

IDEA如何切换数据库版本mysql5或mysql8

《IDEA如何切换数据库版本mysql5或mysql8》本文介绍了如何将IntelliJIDEA从MySQL5切换到MySQL8的详细步骤,包括下载MySQL8、安装、配置、停止旧服务、启动新服务以及... 目录问题描述解决方案第一步第二步第三步第四步第五步总结问题描述最近想开发一个新应用,想使用mysq