本文主要是介绍【opencv GPU】测测你的opencv-GPU 版本每秒处理帧数 大概多少?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
在使用OpenCV的cv2.dnn.Net类从ONNX模型文件创建网络时,如果你想要启用GPU加速,你需要确保OpenCV在安装时已经包含了GPU支持。这通常意味着你需要从源代码编译OpenCV,并确保在编译过程中启用了CUDA支持。
以下是如何在OpenCV中启用GPU加速的步骤:
1、确保OpenCV已正确安装并支持GPU:
如果你已经从源代码编译了OpenCV并启用了CUDA支持,那么你的OpenCV版本应该已经支持GPU加速。
你可以通过运行以下Python代码来检查OpenCV是否支持CUDA:
import cv2
print(cv2.cuda.getCudaEnabledDeviceCount())
如果输出是一个大于0的数字,那么OpenCV已经启用了CUDA支持。
2、加载ONNX模型并设置OpenCV以使用GPU:
使用cv2.dnn.readNetFromONNX加载ONNX模型。
将OpenCV的DNN后端设置为CUDA,以便在GPU上执行推理。
import cv2# 加载ONNX模型
model = cv2.dnn.readNetFromONNX('path/to/model.onnx')# 设置OpenCV DNN后端为CUDA
model.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
model.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)
3、例子
为了得到一个具体的数值,你需要测试你的特定模型和GPU配置。你可以使用OpenCV的DNN模块来加载模型并使用GPU进行推理,然后计算处理一定数量帧所需的时间,最后用这个时间来计算FPS。
以下是一个简单的例子,展示了如何使用OpenCV的DNN模块和GPU来计算FPS:
import cv2
import time# 初始化帧计数器和开始时间
frame_count = 0
start_time = time.time()# 加载模型(确保OpenCV已编译为支持CUDA)
net = cv2.dnn.readNet('path/to/your/model.onnx')
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)# 打开视频文件或摄像头
cap = cv2.VideoCapture('path/to/your/video.mp4') # 或者使用摄像头: cv2.VideoCapture(0)# 检查视频是否成功打开
if not cap.isOpened():print("Error: Could not open video.")exit()# 循环读取视频帧
while True:ret, frame = cap.read()if not ret:break# 准备输入数据blob = cv2.dnn.blobFromImage(frame, size=(640, 640), swapRB=True, crop=False)# 执行推理net.setInput(blob)net.forward()# 更新帧计数器frame_count += 1# 每100帧打印一次FPSif frame_count % 100 == 0:elapsed_time = time.time() - start_timefps = frame_count / elapsed_timeprint(f"FPS: {fps:.2f}")# 释放视频流和窗口
cap.release()
cv2.destroyAllWindows()
这篇关于【opencv GPU】测测你的opencv-GPU 版本每秒处理帧数 大概多少?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!