层次分析法(AHP)详细注释的MATLAB代码(可读性强)

2024-04-21 22:52

本文主要是介绍层次分析法(AHP)详细注释的MATLAB代码(可读性强),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、层次分析法简述

二、层次分析法相关重点

三、层次分析法的MATLAB代码(包含详细注释)

3.1 算术平均法计算权重的函数代码

3.2 几何平均法计算权重的函数代码

3.3 特征值法计算权重的函数代码

3.4 层次分析法主程序的代码

三、相关文件的下载

四、总结


一、层次分析法简述

        层次分析法(Analytic Hierarchy Process,AHP)是一种多准则决策方法,其核心思想是将一个复杂的决策问题分解成多个层次,然后通过比较不同因素之间的相对重要性来做出决策。主要目的是给评价指标赋相应的权重。

第一步:构建层次结构: 首先,将要解决的问题分解成一个层次结构,包括目标层、准则层或指标层、方案层等层次。这些层次之间是逐层递进的关系,最顶层是最终的决策目标,中间层一般是我们的评价指标,底层是具体的方案或选项。

第二步:两两比较: 对每个层次中的元素进行两两比较,以确定它们之间的相对重要性。比较的结果以矩阵形式表示,称为判断矩阵。决策者使用尺度从1到9的标准判断两个元素之间的重要性,1表示相同重要性,9表示极端重要性差异,中间值表示相对程度。

第三步:一致性检验: 对比每个判断矩阵的一致性指标CI和随机平均一致性指标RI,以确定决策者的比较是否一致。如果一致性较差,可能需要重新修改判断矩阵,直到达到一定的一致性标准。

第四步:计算权重向量: 根据判断矩阵,计算出每个层次中各元素的权重。主要通过算术平均法、几何平均法、特征值法求解权重向量。

第五步:综合评估: 将各层次的权重以及方案的评价指标综合起来,计算出各个方案的综合得分。这样可以帮助决策者找到最佳的方案或决策。

        在很多综合评价类的问题中,我们往往需要知道那些指标是比较重要的,那些指标是不太重要的,例如我们在考研的过程中需要经过初试和面试,有的学校将初试成绩取60%,复试成绩取40%,此时的权重向量为U=[0.6,0.4],根据这个权重,从而决定这个学生是否录取。为了描述这种指标的重要程度,我们需要引入一个重要的概念——权重,权重是一个相对于整体评价而言的量化概念,用于衡量某个因素在整体评价中的相对重要性。

        在实际应用中,一般情况下是使用主观经验法来确定权重,但这个方法有一个缺点就是主观性太强,评价并不是很科学,所有有没有一种方法可以求出评价指标的权重?求权重的方法有很多种,例如:TOPSIS法、熵权法、层次分析法等。TOPSIS法与熵权法是基于已有数据来进行评价,相较于层次分析法比较客观,如果数据不是很明确,且数据对指标与指标之间的影响很小,建议使用层次分析法。

二、层次分析法相关重点

相关内容的讲解可以参考以下两个视频(个人觉得把这两位老师的讲解看完,已经可以完全掌握层次分析法):

数学建模层次分析法模型(综合评价类问题)_哔哩哔哩_bilibili

地址:https://www.bilibili.com/video/BV1GJ411k7cj/?spm_id_from=333.337.search-card.all.click&vd_source=61fc0d2ec19e61330ac909c734d9d6cb

层次分析法模型讲解(附matlab和python代码) 【数学建模快速入门】数模加油站 江北_哔哩哔哩_bilibili

地址:

https://www.bilibili.com/video/BV1Yh411u7q6/?spm_id_from=333.337.search-card.all.click&vd_source=61fc0d2ec19e61330ac909c734d9d6cb

三、层次分析法的MATLAB代码(包含详细注释)

3.1 算术平均法计算权重的函数代码

%% 算术平均法计算权重
function [weight] = arithmetic_mean(inputA)
% 将判断矩阵每列求和
asum = sum(inputA);
% 获取的矩阵A的列数和行数
[~,m] = size(inputA);% 此时默认矩阵为方阵
% 将asum变成方阵,方便后面对应相处,从而归一化
asumrepmat = repmat(asum,m,1);
% 件矩阵A归一化可得矩阵B
B = inputA./asumrepmat;
% 将矩阵B按行求和,每个元素除以矩阵的行数
weight = sum(B,2)/m;
% eight便是权重
end

3.2 几何平均法计算权重的函数代码

%% 几何平均法计算权重
function [weight] = geometric_mean(inputA)
% 将判断矩阵的元素按照行相乘得到一个新的列向量
B = prod(inputA,2);
% 获取矩阵input的行数和列数
[~,n] = size(inputA);
% 将新的向量的每个分量开n次方
B = B.^(1/n);
% 对向量B进行归一化
weight = B./sum(B);
end

3.3 特征值法计算权重的函数代码

%% 特征值法计算权重
function [weight] = characteristics(inputA)
% 求出矩阵inputA的最大特征值及对应的特征向量
[v,d] = eig(inputA);% v是特征向量,d是特征值对角矩阵
max_d = max(max(d));
% 找出最大特征值对应的特征向量
[~,c] = find(d == max_d,1); % find查找,查找满足d==max_d条件的一个元素,r是行,c是列
% 将找到的特征向量归一化
weight =abs(v(:,c))./abs(sum(v(:,c)));
end

3.4 层次分析法主程序的代码

%% 层次分析法一致性检验的代码
clear
clc
% 提供的测试数据,第一个不通过一致性检验,第二个通过一致性检验
% A = [1 2 3 5;1/2 1 1/2 2;1/3 2 1 1/2;1/5 1/2 2 1]
% A = [1 2 3 5;1/2 1 1/2 2;1/3 2 1 2;1/5 1/2 1/2 1]
A = input("请输入判断矩阵A:");
[n,m] = size(A); % 获取矩阵A的行和列,n是行,m是列
% 检查输入的是否是方阵
if ismatrix(A) && n==m% 判断是否是正互反矩阵for i = 1:nfor j = 1:mif A(i,j)*A(j,i) ~= 1error("输入错误,判断矩阵不是正互反矩阵!")endendenddisp("输入类型正确!")
elseerror("出错!输入结果不是方阵!")
end
% 求出矩阵A的最大特征值及对应的特征向量
[V,D] = eig(A); %求矩阵的特征值和特征向量,V为特征值,D为特征向量
% 注:此时D是一个对角线为特征值,其它元素为0的矩阵
max_D = max(max(D)); %求出矩阵A的最大的特征值
% 计算一致性指标CI
CI = (max_D-n) / (n-1);%计算一致性指标的计算公式
% 平均随机一致性指标RI(共15个)
RI = [0 0 0.52 0.89 1.12 1.26 1.26 1.36 1.41 1.49 1.52 1.54 1.56 1.58 1.59];
% 
CR = CI/RI(n);
format long
disp("一致性指标CI为");
disp(CI)
disp("对应的平均随机一致性指标RI为")
disp(RI(n))
disp("一致性比例CR为")
disp(CR)
if CR == 0disp("该矩阵为一致矩阵,一致性检验通过!")
elseif CR < 0.10disp("由于CR<0.1,因此该矩阵通过一致性检验!")
elsedisp("由于CR>=0.1,因此该矩阵不通过一致性检验,需要修改判断矩阵!")return
end
while truedisp("请选择方法")disp("输入0,终止执行程序!")disp("输入1,利用算术平均法计算权重")disp("输入2,利用几何平均法计算权重")disp("输入3,利用特征值法计算权重")disp("输入其它数字,则重新输入判断矩阵!")key = input("请输入:");if key == 0disp("程序结束,感谢使用!")breakelseif key == 1disp("你选择的是利用算术平均法计算权重")pause(1)weight_need = arithmetic_mean(A);disp("算术平均法计算权重的结果为:")disp(weight_need)elseif key == 2disp("你选择的是利用几何平均法计算权重")pause(1)weight_need = geometric_mean(A);disp("几何平均法计算权重的结果为:")disp(weight_need) elseif key == 3disp("你选择的是利用特征值法计算权重")pause(1)weight_need = characteristics(A);disp("特征值法计算权重的结果为:")disp(weight_need) elsereturn % 结束程序运行!end
end

三、相关文件的下载

层次分析法(AHP)主程序运行文件资源-CSDN文库

层次分析法(AHP)算术平均法求权重的函数文件资源-CSDN文库

层次分析法(AHP)几何平均法求权重的函数文件资源-CSDN文库

层次分析法(AHP)特征值法求权重的函数文件资源-CSDN文库

四、总结

        本文主要介绍层次分析法的MATLB的代码,代码已经做了详细的注释了,方便各位读者理解。本文并没有详细的介绍层次分析法,后面我将会根据时间更新一篇详细的教程,大家可以关注期待一下,如果你认为本文对你学习层次分析法有帮助可以点赞收藏一下,感谢您的支持!

这篇关于层次分析法(AHP)详细注释的MATLAB代码(可读性强)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/924236

相关文章

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

SpringBoot整合liteflow的详细过程

《SpringBoot整合liteflow的详细过程》:本文主要介绍SpringBoot整合liteflow的详细过程,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋...  liteflow 是什么? 能做什么?总之一句话:能帮你规范写代码逻辑 ,编排并解耦业务逻辑,代码

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

浏览器插件cursor实现自动注册、续杯的详细过程

《浏览器插件cursor实现自动注册、续杯的详细过程》Cursor简易注册助手脚本通过自动化邮箱填写和验证码获取流程,大大简化了Cursor的注册过程,它不仅提高了注册效率,还通过友好的用户界面和详细... 目录前言功能概述使用方法安装脚本使用流程邮箱输入页面验证码页面实战演示技术实现核心功能实现1. 随机

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

Java实现自定义table宽高的示例代码

《Java实现自定义table宽高的示例代码》在桌面应用、管理系统乃至报表工具中,表格(JTable)作为最常用的数据展示组件,不仅承载对数据的增删改查,还需要配合布局与视觉需求,而JavaSwing... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码

Go语言代码格式化的技巧分享

《Go语言代码格式化的技巧分享》在Go语言的开发过程中,代码格式化是一个看似细微却至关重要的环节,良好的代码格式化不仅能提升代码的可读性,还能促进团队协作,减少因代码风格差异引发的问题,Go在代码格式... 目录一、Go 语言代码格式化的重要性二、Go 语言代码格式化工具:gofmt 与 go fmt(一)

HTML img标签和超链接标签详细介绍

《HTMLimg标签和超链接标签详细介绍》:本文主要介绍了HTML中img标签的使用,包括src属性(指定图片路径)、相对/绝对路径区别、alt替代文本、title提示、宽高控制及边框设置等,详细内容请阅读本文,希望能对你有所帮助... 目录img 标签src 属性alt 属性title 属性width/h