常见排序算法(插入排序,希尔排序,选择排序,堆排序,冒泡排序,快速排序,归并排序,计数排序,基数排序,桶排序)

本文主要是介绍常见排序算法(插入排序,希尔排序,选择排序,堆排序,冒泡排序,快速排序,归并排序,计数排序,基数排序,桶排序),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一.排序的概念

1.排序:所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作

2.稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍在r[j]之前,则称这种排序算法是稳定的;否则称为不稳定的。

3.内部排序:数据元素全部放在内存中的排序

4.外部排序:数据元素太多不能同时放在内存中,根据排序过程的要求不能在内外存之间移动数据的排序

二.常见的排序

接下来我们将一一讲解上述排序算法的实现

三.常见排序算法的实现

1.直接插入排序

1.1基本思想

把待排序的记录按其关键码值的大小逐个插入到一个已经排好序的有序序列中,直到所有的记录插入完为止,得到一个新的有序序列 。实际中我们玩扑克牌时,就用了插入排序的思想

1.2实现

    /*** 时间复杂度:O(N^2)*      最好情况下呢? 有序的时候  O(n)*      结论:对于直接插入排序来说  数据越有序 越快* 空间复杂度:O(1)* 稳定性:稳定*     一个稳定的排序  可以实现为不稳定的排序*     但是 一个本身就不稳定的排序  无法实现为稳定的排序** 场景:当前有一组数据 基本上趋于有序 那么就可以使用直接插入排序* 优点:越有序越快* @param array*/public static void insertSort(int[] array){for (int i = 1; i <array.length; i++) {int tmp=array[i];int j=i-1;for(;j>=0;j--){//将tmp与下标为0到i-1的作比较,若tmp大则将tmp赋给该下标后一位if(array[j]>tmp){array[j+1]=array[j];}else{break;}}array[j+1]=tmp;}}

2希尔排序

2.1基本思想

希尔排序法又称缩小增量法。希尔排序法的基本思想是:先选定一个整数,把待排序文件中所有记录分成多个组,所有距离为gap的记录分在同一组内,并对每一组内的记录进行排序。然后,取重复上述分组和排序的工作。当到达gap=1时,所有记录在统一组内排好序。

1. 希尔排序是对直接插入排序的优化。
2. 当gap > 1时都是预排序,目的是让数组更接近于有序。当gap == 1时,数组已经接近有序的了,这样就会很快。这样整体而言,可以达到优化的效果。我们实现后可以进行性能测试的对比。
3. 希尔排序的时间复杂度不好计算,因为gap的取值方法很多,导致很难去计算,因此在好些树中给出的希尔排序的时间复杂度都不固定

2.2实现

    /*** 稳定性:不稳定* 时间复杂度:logN* @param array*/public static void shellSort(int[] array){int gap=array.length;while(gap>1){gap=gap/3+1;shell(array,gap);}}public static void shell(int[] array,int gap){for(int i=gap;i<array.length;i++){int tmp=array[i];int j=i-gap;for(;j>=0;j++){if(array[j]>tmp){array[j+gap]=array[j];}else{break;}}array[j+gap]=tmp;}}

3选择排序

3.1基本思想

每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完

3.2实现

    private static void swap(int[] array,int i,int j){int tmp=array[i];array[i]=array[j];array[j]=tmp;}/*** 时间复杂度: 和数据是否有序无关,均为O(N^2)* 空间复杂度:O(1)* 稳定性:不稳定的排序* @param array*/public static void selectSort1(int[] array){for(int i=0;i< array.length;i++){int minIndex=i;for(int j=i+1;j< array.length;j++){if(array[j]<array[minIndex]){minIndex=j;}}swap(array,minIndex,i);}}public static void selectSort(int[] array){int left=0;int right=array.length-1;while(left<right){int minIndex=left;int maxIndex=left;for(int i=left+1;i<=right;i++){if(array[i]<array[minIndex]){minIndex=i;}if(array[i]>array[maxIndex]){maxIndex=i;}}swap(array,minIndex,left);//如果最大值是left下标,那么上面交换完成以后,//最大值跑到了最小值的位置,所以要更新最大值下标if(maxIndex==left){maxIndex=minIndex;}swap(array,maxIndex,right);left++;right--;}}

4堆排序

4.1基本思想

堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。它是通过堆来进行选择数据。需要注意的是排升序要建大堆,排降序建小堆

4.2实现

 public static void createBigHeap(int[] array){for (int parent=(array.length-1-1/)/2;parent>=0;parent--){siftDown(parent,array,array.length);}}private static void siftDown(int parent,int[] array,int end){int child=2*parent+1;while(child<end){if(child+1<end&&array[child]<array[child+1]){child++;}if(array[child]>array[parent]){swap(array,child,parent);parent=child;child=parent*2+1;}else{break;}}}/*** 时间复杂度:O(N*logN)* 空间复杂度:O(1)* 稳定性:不稳定* @param array*/public static void heapSort(int[] array){createBigHeap(array);int end=array.length-1;while(end>=0){swap(array,0,end);siftDown(0,array,end);end--;}}

5冒泡排序

5.1基本思想

根据序列中两个记录键值的比较结果来对换这两个记录在序列中的位置

5.2实现

/*** 时间复杂度:不管数据有序与否,不优化的情况下均为O(N^2)* 空间复杂度:1* 稳定性:稳定** @param array*/public static void bubbleSort(int[] array){for(int i=0;i<array.length-1;i++){boolean flg=false;for(int j=0;j< array.length-i-1;j++){if(array[j]>array[j+1]){swap(array,j,j+1);flg=true;}}if(!flg){//优化下,当数据有序,时间复杂度为O(N)break;}}}

6快速排序

6.1基本思想

任取待排序元素序列中的某元素作为基准值,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止

6.2实现

public static void quickSort(int[] array) {quick(array, 0, array.length - 1);}private static void quick(int[] array, int start, int end) {if (start >= end) {return;}if (end - start + 1 <= 10) {insertSortRange(array, start, end);return;}int index = midThreeNum(array, start, end);swap(array, index, start);int par = partition(array, start, end);quick(array, start, par - 1);quick(array, par + 1, end);}public static void insertSortRange(int[] array, int left, int right) {for (int i = left + 1; i <= right; i++) {int tmp = array[i];int j = i - 1;for (; j >= left; j--) {if (array[j] > tmp) {array[j + 1] = array[j];} else {break;}}array[j + 1] = tmp;}}//返回值是中位数的下标private static int midThreeNum(int[] array, int left, int right) {int mid = (left + right) / 2;if (array[left] < array[right]) {if (array[mid] < array[left]) {return left;} else if (array[mid] > array[right]) {return right;} else {return mid;}} else {if (array[mid] < array[right]) {return right;} else if (array[mid] > array[left]) {return left;} else {return mid;}}}private static int partitionHoare(int[] array, int left, int right) {int i = left;int tmp = array[left];while (left < right) {while (left < right && array[right] >= tmp) {right--;}while (left < right && array[left] <= tmp) {left++;}swap(array, left, right);}swap(array, left, i);return left;}private static int partition(int[] array, int left, int right) {int tmp = array[left];while (left < right) {while (left < right && array[right] >= tmp) {right--;}array[left] = array[right];while (left < right && array[left] <= tmp) {left++;}array[right] = array[left];}array[left] = tmp;return left;}private static int partitionPre(int[] array, int left, int right) {int prev = left;int cur = left + 1;while (cur <= right) {if (array[cur] < array[left] && array[++prev] != array[cur]) {swap(array, cur, prev);}cur++;}swap(array, prev, left);return prev;}public static void quickSortNor(int[] array) {Stack<Integer> stack = new Stack<>();int left = 0;int right = array.length - 1;int par = partition(array, left, right);if (par > left + 1) {stack.push(left);stack.push(par - 1);}if (par < right - 1) {stack.push(par + 1);stack.push(right);}while (!stack.isEmpty()) {right = stack.pop();left = stack.pop();par = partition(array, left, right);if (par > left + 1) {stack.push(left);stack.push(par - 1);}if (par < right - 1) {stack.push(par + 1);stack.push(right);}}}

7归并排序

7.1基本思想

建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide andConquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并

7.2实现

 public static void mergeSort(int[] array) {mergeSortFun(array, 0, array.length - 1);}public static void mergeSortFun(int[] array, int left, int right) {if (left >= right) {return;}int mid = (right + left) / 2;mergeSortFun(array, left, mid);mergeSortFun(array, mid + 1, right);}private static void merge(int[] array,int left,int mid,int right){int[] tmp=new int[right-left+1];int k=0;int s1=left;int e1=mid;int s2=mid+1;int e2=right;while(s1<=e1&&s2<=e2){if(array[s1]<=array[s2]){tmp[k++]=array[s1++];}else{tmp[k++]=array[s2++];}}while (s1 <= e1) {tmp[k++] = array[s1++];}while (s2 <= e2) {tmp[k++] = array[s2++];}//走到这里 相当于tmp数组中 所有元素都有序了//接下来将tmp数组的内容拷贝到array数组当中for(int i=0;i<k;i++){array[i+left]=tmp[i];}}/*** 非递归实现归并排序*/public static void mergeSortNor(int[] array){int gap=1;while(gap<array.length){for(int i=0;i<array.length;i=i+2*gap){int left=i;int mid=left+gap-1;if(mid>=array.length){mid=array.length-1;}int right=mid+gap;if(right>=array.length){right=array.length-1;}merge(array,left,mid,right);}gap*=2;}}

8其他排序(计数排序、基数排序、桶排序)

8.1计数排序

计数排序又称为鸽巢原理,是对哈希直接定址法的变形应用

操作步骤
1. 统计相同元素出现次数
2. 根据统计的结果将序列回收到原来的序列中

/*** 计数排序* 时间复杂度:O(N+范围)* 空间复杂度:O(范围)* 稳定性:稳定*/public static void countSort(int[] array){//1.遍历数组,求最大值与最小值int maxVal=array[0];int minVal=array[0];for(int i=0;i<array.length;i++){if(maxVal<array[i]){maxVal=array[i];}if(minVal>array[i]){minVal=array[i];}}//2.定义count数组int[] count=new int[maxVal-minVal+1];//3.遍历array数组,把值放入计数数组中for(int i=0;i<array.length;i++){int val=array[i];count[val-minVal]++;}//4.以上3步完成之后,计数数组已经存好了相应的数据//接下来 开始遍历数组 计数数组int index=0;for(int i=0;i<count.length;i++){while(count[i]>0){array[index]=i+minVal;index++;count[i]--;}}}

 

8.2基数排序

1.10 基数排序 | 菜鸟教程 (runoob.com)

8.3桶排序

1.9 桶排序 | 菜鸟教程 (runoob.com)


如果上述内容对您有帮助,希望给个三连谢谢! 

 

这篇关于常见排序算法(插入排序,希尔排序,选择排序,堆排序,冒泡排序,快速排序,归并排序,计数排序,基数排序,桶排序)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/923959

相关文章

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

java常见报错及解决方案总结

《java常见报错及解决方案总结》:本文主要介绍Java编程中常见错误类型及示例,包括语法错误、空指针异常、数组下标越界、类型转换异常、文件未找到异常、除以零异常、非法线程操作异常、方法未定义异常... 目录1. 语法错误 (Syntax Errors)示例 1:解决方案:2. 空指针异常 (NullPoi

C++常见容器获取头元素的方法大全

《C++常见容器获取头元素的方法大全》在C++编程中,容器是存储和管理数据集合的重要工具,不同的容器提供了不同的接口来访问和操作其中的元素,获取容器的头元素(即第一个元素)是常见的操作之一,本文将详细... 目录一、std::vector二、std::list三、std::deque四、std::forwa

C++快速排序超详细讲解

《C++快速排序超详细讲解》快速排序是一种高效的排序算法,通过分治法将数组划分为两部分,递归排序,直到整个数组有序,通过代码解析和示例,详细解释了快速排序的工作原理和实现过程,需要的朋友可以参考下... 目录一、快速排序原理二、快速排序标准代码三、代码解析四、使用while循环的快速排序1.代码代码1.由快

Win32下C++实现快速获取硬盘分区信息

《Win32下C++实现快速获取硬盘分区信息》这篇文章主要为大家详细介绍了Win32下C++如何实现快速获取硬盘分区信息,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 实现代码CDiskDriveUtils.h#pragma once #include <wtypesbase