robot_localization包的使用

2024-04-21 18:32
文章标签 使用 robot localization

本文主要是介绍robot_localization包的使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

robot_localization包没有限制传感器的数据输入。

支持的状态估计节点数据类型:

• nav_msgs/Odometry
• geometry_msgs/PoseWithCovarianceStamped
• geometry_msgs/TwistWithCovarianceStamped
• sensor_msgs/Imu

状态向量:[x y z α β γ x˙ y˙ z˙ α˙ β˙ γ˙ ˙x˙ ˙y˙ ˙z˙](分别代表线速度,欧拉角,加速度,角加速度)

两种典型使用案例:

  • 融合连续的传感器数据(里程计和IMU)创建局部精确的状态估计
  • 融合连续的传感器数据及全局位姿估计来提供精确而完整的全局状态估计

状态估计节点

  • ekf_localization:扩展卡尔曼滤波
  • ukf_localization:无迹卡尔曼滤波

gps传感器预处理节点

navsat_transform_node:允许用户将地理坐标(纬度和经度)转换为机器人的世界框架(通常是map或odom)

TF树

协方差矩阵(包含初估计方差和噪声方差)

kf_localization_node

指明坐标框架

<param name="map_frame" value="map"/>
<param name="odom_frame" value="odom"/>
<param name="base_link_frame" value="base_link"/>
<param name="world_frame" value="odom"/>

传感器输入

<param name="odom0" value="/controller/odom"/>
<param name="odom1" value="/some/other/odom"/>
<param name="pose0" value="/altitude"/>
<param name="pose1" value="/some/other/pose"/>
<param name="pose2" value="/yet/another/pose"/>
<param name="twist0" value="/optical_flow"/>
<param name="imu0" value="/imu/left"/>
<param name="imu1" value="/imu/right"/>
<param name="imu2" value="/imu/front"/>
<param name="imu3" value="/imu/back"/>

协方差矩阵的输入

噪声方差

process_noise_covariance: [0.05, 0,    0,    0,    0,    0,    0,     0,     0,    0,    0,    0,    0,    0,    0,0,    0.05, 0,    0,    0,    0,    0,     0,     0,    0,    0,    0,    0,    0,    0,0,    0,    0.06, 0,    0,    0,    0,     0,     0,    0,    0,    0,    0,    0,    0,0,    0,    0,    0.03, 0,    0,    0,     0,     0,    0,    0,    0,    0,    0,    0,0,    0,    0,    0,    0.03, 0,    0,     0,     0,    0,    0,    0,    0,    0,    0,0,    0,    0,    0,    0,    0.06, 0,     0,     0,    0,    0,    0,    0,    0,    0,0,    0,    0,    0,    0,    0,    0.025, 0,     0,    0,    0,    0,    0,    0,    0,0,    0,    0,    0,    0,    0,    0,     0.025, 0,    0,    0,    0,    0,    0,    0,0,    0,    0,    0,    0,    0,    0,     0,     0.04, 0,    0,    0,    0,    0,    0,0,    0,    0,    0,    0,    0,    0,     0,     0,    0.01, 0,    0,    0,    0,    0,0,    0,    0,    0,    0,    0,    0,     0,     0,    0,    0.01, 0,    0,    0,    0,0,    0,    0,    0,    0,    0,    0,     0,     0,    0,    0,    0.02, 0,    0,    0,0,    0,    0,    0,    0,    0,    0,     0,     0,    0,    0,    0,    0.01, 0,    0,0,    0,    0,    0,    0,    0,    0,     0,     0,    0,    0,    0,    0,    0.01, 0,0,    0,    0,    0,    0,    0,    0,     0,     0,    0,    0,    0,    0,    0,    0.015]

估计方差

initial_estimate_covariance: [1e-9, 0,    0,    0,    0,    0,    0,    0,    0,    0,     0,     0,     0,    0,    0,0,    1e-9, 0,    0,    0,    0,    0,    0,    0,    0,     0,     0,     0,    0,    0,0,    0,    1e-9, 0,    0,    0,    0,    0,    0,    0,     0,     0,     0,    0,    0,0,    0,    0,    1e-9, 0,    0,    0,    0,    0,    0,     0,     0,     0,    0,    0,0,    0,    0,    0,    1e-9, 0,    0,    0,    0,    0,     0,     0,     0,    0,    0,0,    0,    0,    0,    0,    1e-9, 0,    0,    0,    0,     0,     0,     0,    0,    0,0,    0,    0,    0,    0,    0,    1e-9, 0,    0,    0,     0,     0,     0,    0,    0,0,    0,    0,    0,    0,    0,    0,    1e-9, 0,    0,     0,     0,     0,    0,    0,0,    0,    0,    0,    0,    0,    0,    0,    1e-9, 0,     0,     0,     0,    0,    0,0,    0,    0,    0,    0,    0,    0,    0,    0,    1e-9,  0,     0,     0,    0,    0,0,    0,    0,    0,    0,    0,    0,    0,    0,    0,     1e-9,  0,     0,    0,    0,0,    0,    0,    0,    0,    0,    0,    0,    0,    0,     0,     1e-9,  0,    0,    0,0,    0,    0,    0,    0,    0,    0,    0,    0,    0,     0,     0,     1e-9, 0,    0,0,    0,    0,    0,    0,    0,    0,    0,    0,    0,     0,     0,     0,    1e-9, 0,0,    0,    0,    0,    0,    0,    0,    0,    0,    0,     0,     0,     0,    0,    1e-9]

使用navsat_transform_node

过程

  • 将gps数据转换成UTM坐标
  • 使用初始的UTM坐标,EKF/UKF输出和IMU生成从UTM网格到机器人世界框架的(静态)变换T
  • 使用T变换所有测量的gps数据
  • 将数据发给EKF/UKF

需要的输入:
• nav_msgs/Odometry (EKF输出,需要机器人当前的位置)
• sensor_msgs/Imu (必须有陀螺仪,需要确定全局朝向)
• sensor_msgs/NavSatFix (从导航卫星设备输出)

相关设置

<param name="magnetic_declination_radians" value="0"/>
<param name="yaw_offset" value="0"/>
<param name="zero_altitude" value="true"/>
<param name="broadcast_utm_transform" value="true"/>
<param name="publish_filtered_gps" value="true"/>

 

 

 

这篇关于robot_localization包的使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/923758

相关文章

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定