海龟策略深入研究-策略回测系列-11 品种选择检验(四)

2024-04-21 09:48

本文主要是介绍海龟策略深入研究-策略回测系列-11 品种选择检验(四),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

重新构建投资组合

 

1)初步筛选

 
初步筛选从仅仅基于历史行情外,还加多了品种波动率和自相关性的要求,故总的来说其初步筛选条件为三点:

  • 历史行情:2014年1月1日前上市
  • 调整后波动率比值>1
  • ADF值>10%

 

根据初步筛选标准,剔除了不符合要求品种后,测试样本从调整前的35个缩小至27个,根据其调整后波动率比值的大小按从大到小排序,如图所示。
结合高成交量特征,一般来说,成交量高的品种,其波动率高,自相关性强,故具有正相关性。
 
enter image description here
 
根据交易所分类,这27个品种划分成4部分:

  • 中金所:IF
  • 上交所:ZN、RB、CU、WR、PB、BU、AL
  • 郑商所:TA、CF、RS、SR、RI、WH、FG
  • 大商所:J、BB、B、JM、JD、A、Y、C、FB、M、L、V

 
初步筛选之后,我们会通过不同的回望周期(如2年、3年、4年)以及基于回归夏普比率不同的筛选标准来得到若干个海龟组合备选方案,最后通过相互比较得到最终的组合。
(以下测试基于米筐RQData的小时级别期货指数数据,有兴趣的朋友可以自行验证或者使用别的数据源测试一下!)
 

2)2年回望周期测试

选择标准:回归夏普比率>0.4
 

a.2014-2015年测试


对初步筛选出来的样本进行2014-2015年回测,选择回归夏普比率>0.4的品种,然后构成组合,如图所示。

enter image description here
enter image description here
enter image description here
enter image description here
enter image description here
enter image description here
enter image description here
enter image description here

 

根据回归夏普比率>0.4的准则,筛选出了14个品种,其历史表现和2016年预测表现如图6-23所示。投资组合在2014-2015年年化收益96.46%,百分比最大回撤-32.75%,夏普比率达2.04,资金曲线平滑且整体向上,但是2016年预测表现不佳,需要剔除更多噪声因子。
下面分析一下挑选出来的品种成分,按交易所分类如下:

  • 中金所:沪深300股指
  • 上期所:铝、铜、螺纹钢、铅、线材、锌
  • 郑商所:普麦、PTA
  • 大商所:玉米、铁矿石、焦煤、黄大豆2号、豆粕、聚乙烯

enter image description here

 
 

b.2015-2016年测试


同样对剩下的样本进行2015-2016年回测,选择回归夏普比率>0.4的品种,然后构成组合。

enter image description here
enter image description here
enter image description here
enter image description here
enter image description here

 
经过第二轮筛选后,剩下9个品种,同样按照交易所分类,如下:

  • 上期所:铝、铜、螺纹钢、锌
  • 郑商所:普麦
  • 大商所:玉米、铁矿石、焦炭、豆粕

 
在新的投资组合中,年化收益达92.04%,百分比最大回撤是-16.8%,夏普比率达2.4,整体资金曲线比较平滑。在2017年预测表现理想,年化收益46.49%,百分比最大回撤-30.45%,夏普比率达1.09,如图所示。

enter image description here

 
 

c.2016-2017测试


最后一轮策略,将挑选出最终的品种组成海龟组合,单品种品种如图所示。
enter image description here
enter image description here
enter image description here

 
第三轮筛选后,基于回归夏普比率>0.4得到由铝、铜、锌、普麦、铁矿石、焦炭、螺纹钢组成的海龟组合,2016-2017年标准夏普达1.56,2018年预测的夏普比率是-0.12,全时间区间的夏普比率表现是1.17。投资组合效果差强人意。

enter image description here
 

基于上面2年回望周期所做展示的回测图,可以更加便捷的更改筛选标准而不用从新进行测试就得到结果,故下面把筛选标准改成回归夏普比率>0.6,其测试情况如图所示。
把筛选标准提高0.2后,得到的样本数量降低到5个,分别是铝、铜、锌、铁矿石、焦炭,2016-2017年标准夏普达1.29,2018年预测的夏普比率是0.7,全时间区间的夏普比率表现是1.22。
enter image description here
 

若把筛选标准提升至回归夏普比率>0.8,则得到4个样本品种:铜、锌、铁矿石、焦炭,2016-2017年标准夏普达1.87,2018年预测的夏普比率是-0.03,全时间区间的夏普比率表现是1.38,如图所示。

enter image description here

这篇关于海龟策略深入研究-策略回测系列-11 品种选择检验(四)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/922778

相关文章

SpringBoot如何通过Map实现策略模式

《SpringBoot如何通过Map实现策略模式》策略模式是一种行为设计模式,它允许在运行时选择算法的行为,在Spring框架中,我们可以利用@Resource注解和Map集合来优雅地实现策略模式,这... 目录前言底层机制解析Spring的集合类型自动装配@Resource注解的行为实现原理使用直接使用M

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

基于Python实现多语言朗读与单词选择测验

《基于Python实现多语言朗读与单词选择测验》在数字化教育日益普及的今天,开发一款能够支持多语言朗读和单词选择测验的程序,对于语言学习者来说无疑是一个巨大的福音,下面我们就来用Python实现一个这... 目录一、项目概述二、环境准备三、实现朗读功能四、实现单词选择测验五、创建图形用户界面六、运行程序七、

前端知识点之Javascript选择输入框confirm用法

《前端知识点之Javascript选择输入框confirm用法》:本文主要介绍JavaScript中的confirm方法的基本用法、功能特点、注意事项及常见用途,文中通过代码介绍的非常详细,对大家... 目录1. 基本用法2. 功能特点①阻塞行为:confirm 对话框会阻塞脚本的执行,直到用户作出选择。②

Deepseek使用指南与提问优化策略方式

《Deepseek使用指南与提问优化策略方式》本文介绍了DeepSeek语义搜索引擎的核心功能、集成方法及优化提问策略,通过自然语言处理和机器学习提供精准搜索结果,适用于智能客服、知识库检索等领域... 目录序言1. DeepSeek 概述2. DeepSeek 的集成与使用2.1 DeepSeek API

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

SpringBoot中的404错误:原因、影响及解决策略

《SpringBoot中的404错误:原因、影响及解决策略》本文详细介绍了SpringBoot中404错误的出现原因、影响以及处理策略,404错误常见于URL路径错误、控制器配置问题、静态资源配置错误... 目录Spring Boot中的404错误:原因、影响及处理策略404错误的出现原因1. URL路径错

Redis多种内存淘汰策略及配置技巧分享

《Redis多种内存淘汰策略及配置技巧分享》本文介绍了Redis内存满时的淘汰机制,包括内存淘汰机制的概念,Redis提供的8种淘汰策略(如noeviction、volatile-lru等)及其适用场... 目录前言一、什么是 Redis 的内存淘汰机制?二、Redis 内存淘汰策略1. pythonnoe

Python 中 requests 与 aiohttp 在实际项目中的选择策略详解

《Python中requests与aiohttp在实际项目中的选择策略详解》本文主要介绍了Python爬虫开发中常用的两个库requests和aiohttp的使用方法及其区别,通过实际项目案... 目录一、requests 库二、aiohttp 库三、requests 和 aiohttp 的比较四、requ

Redis过期键删除策略解读

《Redis过期键删除策略解读》Redis通过惰性删除策略和定期删除策略来管理过期键,惰性删除策略在键被访问时检查是否过期并删除,节省CPU开销但可能导致过期键滞留,定期删除策略定期扫描并删除过期键,... 目录1.Redis使用两种不同的策略来删除过期键,分别是惰性删除策略和定期删除策略1.1惰性删除策略