How do I know if my Mac Pro is 32 or 64 bit system?

2024-04-19 21:58
文章标签 mac system pro 64 32 bit know

本文主要是介绍How do I know if my Mac Pro is 32 or 64 bit system?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

http://support.apple.com/kb/ht3696

这篇关于How do I know if my Mac Pro is 32 or 64 bit system?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/918538

相关文章

mac安装brew 与 HomeBrew

/bin/zsh -c "$(curl -fsSL https://gitee.com/cunkai/HomebrewCN/raw/master/Homebrew.sh)" curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install.sh >> brew_install BREW_REPO="

mac jdk 1.7 dmg 官方版

百度云下载 https://pan.baidu.com/s/1SQiidrPFF5aZr4xlx0ekoQ https://pan.baidu.com/s/1SQiidrPFF5aZr4xlx0ekoQ   补充说明: 实际上oracle对于历史版本的jdk都有归档可以在官方网站上下载,只是需要注册个号就可以了。 地址如下: https://www.oracle.com/cn/java

Partical System

创建"粒子系统物体"(点击菜单GameObject -> Create Other -> Particle System) 添加"粒子系统组件"(点击Component -> Effects  ->Particle System) 粒子系统检视面板  点击粒子系统检视面板的右上角的"+"来增加新的模块。(Show All Modules:显示全部) 初始化模块: •

NGINX轻松管理10万长连接 --- 基于2GB内存的CentOS 6.5 x86-64

转自:http://blog.chinaunix.net/xmlrpc.php?r=blog/article&uid=190176&id=4234854 一 前言 当管理大量连接时,特别是只有少量活跃连接,NGINX有比较好的CPU和RAM利用率,如今是多终端保持在线的时代,更能让NGINX发挥这个优点。本文做一个简单测试,NGINX在一个普通PC虚拟机上维护100k的HTTP

小技巧绕过Sina Visitor System(新浪访客系统)

0x00 前言 一直以来,爬虫与反爬虫技术都时刻进行着博弈,而新浪微博作为一个数据大户更是在反爬虫上不遗余力。常规手段如验证码、封IP等等相信很多人都见识过…… 当然确实有需要的话可以通过新浪开放平台提供的API进行数据采集,但是普通开发者的权限比较低,限制也比较多。所以如果只是做一些简单的功能还是爬虫比较方便~ 应该是今年的早些时候,新浪引入了一个Sina Visitor Syst

编程应该用 Mac 还是 PC ?

『有人的地方,就有江湖』—徐克。笑傲江湖。     序     一个竞争的市场,就会有对立的产生,这世界存在著很多不同的领域,领域好比是个江湖的缩影,因此就有许多门派的纷争,例如说浏览器领域有著最大宗的IE派,门派成长速度飞快,武功版号跳的跟台湾物价指数一样快的Chrome门,不断被模仿,一直被超越的Opera派;韧性极强,一直对抗几大势力的Firefox派等等,程序语言也有自己的领域

LeetCode:64. 最大正方形 动态规划 时间复杂度O(nm)

64. 最大正方形 题目链接 题目描述 给定一个由 0 和 1 组成的二维矩阵,找出只包含 1 的最大正方形,并返回其面积。 示例1: 输入: 1 0 1 0 01 0 1 1 11 1 1 1 11 0 0 1 0输出: 4 示例2: 输入: 0 1 1 0 01 1 1 1 11 1 1 1 11 1 1 1 1输出: 9 解题思路 这道题的思路是使用动态规划

[论文笔记]LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale

引言 今天带来第一篇量化论文LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale笔记。 为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们"。 大语言模型已被广泛采用,但推理时需要大量的GPU内存。我们开发了一种Int8矩阵乘法的过程,用于Transformer中的前馈和注意力投影层,这可以将推理所需

System.getProperties().

Java.version Java 运行时环境版本 java.vendor Java 运行时环境供应商 java.vendor.url Java 供应商的 URL java.home Java 安装目录 java.vm.specification.version Java 虚拟机规范版本 java.vm.specification.vendor

【Python从入门到进阶】64、Pandas如何实现数据的Concat合并

接上篇《63.Pandas如何实现数据的Merge》 上一篇我们学习了Pandas如何实现数据的Merge,本篇我们来继续学习Pandas如何实现数据的Concat合并。 一、引言 在数据处理过程中,经常需要将多个数据集合并为一个统一的数据集,以便进行进一步的分析或建模。这种需求在多种场景下都非常常见,比如合并不同来源的数据集以获取更全面的信息、将时间序列数据按时间顺序拼接起来以观察长期趋势等