NGINX轻松管理10万长连接 --- 基于2GB内存的CentOS 6.5 x86-64

2024-09-09 03:58

本文主要是介绍NGINX轻松管理10万长连接 --- 基于2GB内存的CentOS 6.5 x86-64,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转自:http://blog.chinaunix.net/xmlrpc.php?r=blog/article&uid=190176&id=4234854

一 前言

当管理大量连接时,特别是只有少量活跃连接,NGINX有比较好的CPU和RAM利用率,如今是多终端保持在线的时代,更能让NGINX发挥这个优点。本文做一个简单测试,NGINX在一个普通PC虚拟机上维护100k的HTTP长连接,然后查看NGINX和系统的资源利用率。

二 测试环境

1.服务端

硬件:双核2.3GHz,2GB内存
软件:CentOS 6.5, kernel 2.6.32,  gcc 4.4.7, nginx 1.4.7
IP:10.211.55.8

内核参数调整:
$ /sbin/sysctl -w net.netfilter.nf_conntrack_max=102400 # 提升系统整体连接数
$ /sbin/sysctl net.netfilter.nf_conntrack_max #验证是否生效

NGINX从源码编译时带--with-http_stub_status_module,只列出与默认设置不同的部分:
worker_rlimit_nofile 102400;
events {
worker_connections  102400;
}
http {
# 设一个比较大得超时,客户端能以平缓的方式发送HEAD请求来维持KeepAlive
keepalive_timeout  3600;

#监控连接数,本机访问
location /nginx_status {
stub_status on;
access_log   off;
allow 127.0.0.1;
deny all;
}
}

2. 客户端1

硬件:双核2.3GHz,2GB内存
软件:CentOS 6.5, kernel 2.6.32, gcc 4.4.7, Python 3.3.5
IP:10.211.55.9

内核参数调整:
$ /sbin/sysctl -w net.ipv4.ip_local_port_range="1024 61024” #实际只使用50000个端口
$ /sbin/sysctl net.ipv4.ip_local_port_range #验证是否生效
$ vi /etc/security/limits.conf #提升当前用户的最大打开文件数nofile(hard >= soft > 50000)
$ ulimit -n #验证是否生效,可能需重启shell

Python 3.3.5从源码编译,如下配置:
$ pyvenv ~/pyvenv #创建虚拟环境,便于测试
$ . ~/pyvenv/bin/activate #激活虚拟环境
(pyvenv) $ python get-pip.py #从pip官网下载get-pip.py
(pyvenv) $ pip install asyncio #安装异步IO模块

因为Apache ab只能批量请求,不能维持连接,所以自己写了一个HTTP长连接测试工具asyncli.py,详细实现见 http://blog.chinaunix.net/uid-190176-id-4223282.html。
基本用法:
(pyvenv) $ python  asyncli.py --help
usage:  asyncli.py [-h] [-c CONNECTIONS] [-k KEEPALIVE] url

asyncli

positional arguments:
url                   page address

optional arguments:
-h, --help            show this help message and exit
-c CONNECTIONS, --connections CONNECTIONS
number of connections simultaneously
-k KEEPALIVE, --keepalive KEEPALIVE
HTTP keepalive timeout

工作机制:
每隔10毫秒连续创建10个连接(每秒约1000个连接),直到总连接数达到CONNECTIONS,每个连接都会睡眠[1, KEEPALIVE / 2]的一个随机数(单位为秒),然后向服务端url发送一个HEAD请求来维持HTTP KeepAlive,然后重复上一个睡眠步骤。。。
3. 客户端2

与客户端1完全一致,除了IP为10.211.55.10

三 运行与输出

1. 服务端系统空闲
# vmstat
procs -----------memory---------- ---swap-- -----io---- --system-- -----cpu-----
r  b   swpd   free   buff  cache   si   so    bi    bo   in   cs us sy id wa st
0  0      0 1723336  11624  76124    0    0    62     1   26   28  0  0 100  0  0

2. 服务端启动NGINX,无外部WEB请求
# nginx
# vmstat
procs -----------memory---------- ---swap-- -----io---- --system-- -----cpu-----
r  b   swpd   free   buff  cache   si   so    bi    bo   in   cs us sy id wa st
0  0      0 1681552  11868  76840    0    0    50     1   24   25  0  0 100  0  0 

3. 客户端1和2先后启动,每个客户端发起50000个长连接,并维持直到服务端关闭或超时
(pyvenv) $ python  asyncli.py -c 50000 -k 3600  http://10.211.55.8/ &

4. 约2小时后。。。查看服务端
# curl  http://127.0.0.1/nginx_status
Active connections: 100001
server accepts handled requests
165539 165539 1095055
Reading: 0 Writing: 1 Waiting: 100000

# ps -p 1899 -o pid,%cpu,%mem,rss,comm
PID %CPU %MEM   RSS COMMAND
1899  2.0  4.9 94600 nginx
# vmstat 3
procs -----------memory---------- ---swap-- -----io---- --system-- -----cpu-----
r  b   swpd   free   buff  cache   si   so    bi    bo   in   cs us sy id wa st
0  0      0 654248  62920 158924    0    0     6     6  361  108  0  1 98  0  0    
0  0      0 654232  62920 158952    0    0     0    85  804  218  0  1 98  0  0    
0  0      0 654108  62928 158976    0    0     0     9  813  214  0  1 98  0  0    
0  0      0 654108  62928 159004    0    0     0     0  803  220  0  1 99  0  0    
^C

# free
total       used       free     shared    buffers     cached
Mem:       1918576    1264576     654000          0      62952     159112
-/+ buffers/cache:    1042512     876064
Swap:      4128760          0    4128760
 
四 总结

1. NGINX平均每个连接的内存占用很小,通过ps的rss看出,每个连接物理内存占用约1k。多数内存都被内核TCP缓存占用。
2. NGINX维持大量连接(少量活跃连接,本文中平均每秒活跃连接为总连接数的千分之一)占用很少CPU,上文仅为2%。
3. 最好的优化就是不优化。整个测试除了提升文件数和连接数的这些硬限制外,没有任何参数调优,但仔细计算下就发现平均每个连接内存占用不到10k,远小于默认的缓存大小(net.ipv4.tcp_rmem = 4096     87380     4194304)和 (net.ipv4.tcp_wmem = 4096     16384     4194304)
4. NGINX维持此类连接的主要瓶颈就是可用内存大小,我的2GB内存虚拟机其实可以支持15万长连接,只不过我物理机器没有内存再继续clone虚拟机客户端了:-(
5. 虽然会遇到更多内核参数的限制,但大内存服务器支持100万连接是完全没问题的。 

这篇关于NGINX轻松管理10万长连接 --- 基于2GB内存的CentOS 6.5 x86-64的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1150097

相关文章

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式

《Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式》本文详细介绍如何使用Java通过JDBC连接MySQL数据库,包括下载驱动、配置Eclipse环境、检测数据库连接等关键步骤,... 目录一、下载驱动包二、放jar包三、检测数据库连接JavaJava 如何使用 JDBC 连接 mys

Qt使用QSqlDatabase连接MySQL实现增删改查功能

《Qt使用QSqlDatabase连接MySQL实现增删改查功能》这篇文章主要为大家详细介绍了Qt如何使用QSqlDatabase连接MySQL实现增删改查功能,文中的示例代码讲解详细,感兴趣的小伙伴... 目录一、创建数据表二、连接mysql数据库三、封装成一个完整的轻量级 ORM 风格类3.1 表结构

Knife4j+Axios+Redis前后端分离架构下的 API 管理与会话方案(最新推荐)

《Knife4j+Axios+Redis前后端分离架构下的API管理与会话方案(最新推荐)》本文主要介绍了Swagger与Knife4j的配置要点、前后端对接方法以及分布式Session实现原理,... 目录一、Swagger 与 Knife4j 的深度理解及配置要点Knife4j 配置关键要点1.Spri

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

前端如何通过nginx访问本地端口

《前端如何通过nginx访问本地端口》:本文主要介绍前端如何通过nginx访问本地端口的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、nginx安装1、下载(1)下载地址(2)系统选择(3)版本选择2、安装部署(1)解压(2)配置文件修改(3)启动(4)

SpringBoot连接Redis集群教程

《SpringBoot连接Redis集群教程》:本文主要介绍SpringBoot连接Redis集群教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 依赖2. 修改配置文件3. 创建RedisClusterConfig4. 测试总结1. 依赖 <de

k8s上运行的mysql、mariadb数据库的备份记录(支持x86和arm两种架构)

《k8s上运行的mysql、mariadb数据库的备份记录(支持x86和arm两种架构)》本文记录在K8s上运行的MySQL/MariaDB备份方案,通过工具容器执行mysqldump,结合定时任务实... 目录前言一、获取需要备份的数据库的信息二、备份步骤1.准备工作(X86)1.准备工作(arm)2.手