Python零基础从小白打怪升级中~~~~~~~生成器和迭代器

2024-04-19 20:52

本文主要是介绍Python零基础从小白打怪升级中~~~~~~~生成器和迭代器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第十七节:生成器和迭代器

一、迭代器

本质: 一个实现了__iter__方法和__next__方法的对象

注意 Iterator对象和 Iterable对象,一个是迭代器,一个是可迭代对象

1、list、dict、str、tuple、set是可迭代对象但不是迭代器;

2、可迭代对象可以转为迭代器,for循环会自动转换成迭代器。或者调用iter函数

3、如果把所有数据丢到列表中 可以 优点 速度快 缺点 列表占内存太大,如果使用迭代器申请固定的空间也就是一个个的拿出来, 能节约内存,但是浪费时间;

4、需要用类来写迭代器,需要重写 _ iter _( ) 和 _ next _( )方法;思考一下

5、自定义迭代器最大的特点是,需要用类来写,显得代码冗长,不太方便。所以直接使用生成器

from collections.abc import Iterable, Iterator
class GenreratorPrime(object):def __init__(self):self.i = 2# 需要用类来写迭代器,需要重写 _ _iter_ _( ) 和 _ _next_ _( )方法;def __iter__(self):return selfdef __next__(self):if self.i == 2:self.i += 1return 2while True:self.i += 1for j in range(2, self.i):if self.i % j == 0:breakelse:return self.igp = GenreratorPrime()
print(isinstance(gp, Iterable))
print(isinstance(gp, Iterator))
iter1 = iter(gp)
print(next(iter1))
print(next(iter1))
print(next(iter1))
print(next(iter1))
print(next(iter1))
print(next(iter1))
print(next(iter1))
print(next(iter1))

二、生成器

生成器(generator)也是一种迭代器 ,在每次迭代时返回一个值,直到抛出 StopIteration 异常。它有两种构造方式:

  • 表达式来创建生成器
  • 包含有yield的函数来创建生成器

1、表达式创建生成器

print([x for x in range(6)])
print((x for x in range(6)))
numbers = (x for x in range(6))
# for n in numbers:
#     print(n)print(hasattr(numbers, '__iter__'))
print(hasattr(numbers, 'next'))
print(hasattr(numbers, '__next__'))print(numbers.__next__())print(next(numbers))
print(next(numbers))
print(next(numbers))
print(next(numbers))
print(next(numbers))
print(next(numbers))
print(next(numbers))

总结:

可以看出生成器表达式无法像列表推导式那样直接输出,它和可迭代对象一样只能采用for循环调用next()函数,原因在于range返回的是一个可迭代对象,列表推导式之所以能直接print就是因为[]将可迭代对象转为列表。

2、含有yield关键字的函数

一个带有 yield 的函数就是一个生成器函数,当我们使用 yield 时,它帮我们自动创建了__iter__() 和 next() 方法,而且在没有数据时,也会抛出 StopIteration 异常,也就是我们不费吹灰之力就获得了一个迭代器,非常简洁和高效。

def generator_func():v1 = yield 1print(f'hello {v1}')v1 = yield 2print(f'value1 is {v1}')v2 = yield 3print(f'value2 is {v2}')v3 = yield 4print(f'value3 is {v3}')g = generator_func()
print(g.__next__())
print(g.__next__())
print(g.send(100))
g.send(1)
print(g.send(2))

总结:

  1. yield 把函数变成了一个生成器。
  2. 调用该函数的时候不会立即执行代码,而是返回了一个生成器对象
  3. 当使用 next() (在 for 循环中会自动调用 next() ) 作用于返回的生成器对象时,函数 开始执行,在遇到 yield 的时候会『暂停』,并返回当前的迭代值;
  4. 当再次使用 next() 的时候,函数会从原来『暂停』的地方继续执行,直到遇到 yield语 句,如果没有 yield 语句,则抛出异常;
  5. 生成器函数的执行过程看起来就是不断地 =执行->中断->执行->中断的过程
  6. send() 方法就是 next() 的功能,加上传值给 上次暂停的yield 。
  7. close() 方法来关闭一个生成器。生成器被关闭后,再次调用 next() 方法,不管能否遇到 yield 关键字,都会抛出 StopIteration 异常,

3、案例

创建一个获取所有质数的生成器

def generator_prime():i = 2yield iwhile True:i += 1for j in range(2, i):if i % j == 0:breakelse:yield ig = generator_prime()
print(next(g))
print(next(g))
print(next(g))
print(next(g))
print(next(g))
print(next(g))
print(next(g))

这篇关于Python零基础从小白打怪升级中~~~~~~~生成器和迭代器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/918460

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e