图搜索的经典启发式算法A星(A*、A Star)算法详解

2024-04-19 20:04

本文主要是介绍图搜索的经典启发式算法A星(A*、A Star)算法详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1. 引言
  • 2. 广度优先搜索
  • 3. Dijkstra 算法
  • 4. 启发式优先搜索(Heuristic)
    • 4.1 贪心最佳优先搜索
    • 4.2 A*搜索


1. 引言

在许多场景中,我们常会遇到一类问题,即“找到一个位置到另一个位置的距离最短(用时最少)的路径”,解决这类问题可以将实际问题映射到一张网络图上,并通过图搜索算法进行求解,这里所说的图搜索算法指的是一系列基于图的算法,而本文将介绍的 A* 算法是其中最为流行的启发式搜索算法,由于 A* 算法结合了其他的基础图搜索的特点,因此本文将从最简单的图搜索算法“广度优先搜索”开始介绍,逐步扩展至 A* 算法。

在这里插入图片描述

刚才提到,图搜索算法都需要基于一张图,即将实际的复杂的地图映射成具有固定节点( N o d e s Nodes Nodes)和边( E d g e s Edges Edges)的图( G r a p h Graph Graph),有些边是有方向限制的,为弧 A r c s Arcs Arcs。具体的映射方式很多,即同样一张地图,可以映射成具有 10 10 10 个节点的路线图,也可以映射成 100 100 100 个节点的网格图,在求解过程中,节点数越多的图的求解时间越长,尽管它在一定程度上更能近似于实际情况且更易处理。

2. 广度优先搜索

广度优先搜索(Breadth First Search, BFS)原本是一种在树形数据结构中搜索满足给定属性的节点的算法,后在 1961 年由 CY Lee 等人开发成一种路径搜索算法。

在图搜索中,有一个称为待探索边界 f r o n t i e r frontier frontier 的概念,即图搜索算法基于起点,不断地推进待探索边界,直到该边界触碰到目标点时结束,而由于该算法的特点是在所有方向上平等地探索,因此这个推进待探索边界的过程也被称为“洪水填充 ( f l o o d f i l l ) (flood\ fill) (flood fill)”,该算法由于简单易实现的特性,在许多寻路和图分析场景都有应用,具体如下图所示。

在这里插入图片描述

这里的 f r o n t i e r frontier frontier 在代码实现中,是一个待探索的节点队列。队列的初始元素为起始点,基于起始点向前一步探索(下一步可以走到哪些节点),将这些相邻节点扩展到 f r o n t i e r frontier frontier 队列当中,以此类推。每扩展一个节点,记录下该节点的父节点,方便在探索到目标节点后,返回出最优路线。该算法在路径搜索问题上的逻辑如下(伪代码):

frontier = Queue() 			# 生成一个队列
frontier.put(start)			# 以起点作为开始
came_from = dict() 			# path A->B 存储为 came_from[B] == A
came_from[start] = None		# 存储每个节点的上一个位置while not frontier.empty(): # 只要边界队列不为空就循环下去current = frontier.get() # 从边界中取出一个点if current = goal:		# 算法终止机制,判断当前节点是否为目标点break					# 路径长度限制、遍历的点数、寻到的目标点数......都可以是终止约束for next in graph.neighbors(current): # 基于这个点向相邻的点进行扩展if next not in came_from: # 只要这个扩展的点不曾遍历到,就添加到边界中和已遍历节点集合中frontier.put(next)came_from[next] = current# 获得最有路线
current = goal 
path = []
while current != start: path.append(current) # 从目标点回溯到起点current = came_from[current]
path.append(start)
path.reverse() 			# optional 获得最优路线

3. Dijkstra 算法

前文的广度优先搜索算法,在待探索边界上,以同样的权重按顺序地推进待探索边界,即认为每个边的权重是一致的,但在实际的许多场景中,连接节点的边的权重往往并不相同,显然,在相同的探索深度下,累计代价最小的节点有更大的概率探索到总代价 g ( n ) g(n) g(n) 小的路线,因此基于广度优先搜索的思路,将待探索边界从普通队列变更为优先队列,评估优先顺序时考虑当前节点到起始点的距离(成本)。

常常用 g ( n ) g(n) g(n) 表示从起始节点到 n n n 节点的路径成本。

由于 Dijkstra 算法带有权重地进行探索,改变了 f r o n t i e r frontier frontier 的推进方向,因此有可能出现多次(不同路线)探索同一个节点的情况,对于已经探索过的节点,如果新路线的累积代价更小,则更新该节点的信息。基于 Dijkstra 算法的伪代码如下:

frontier = PriorityQueue()			# 生成优先队列
frontier.put(start, 0)				# 优先遍历队列中优先度更好(小)的节点
came_from = dict()
cost_so_far = dict()				# 存储节点和起点之间的距离
came_from[start] = None
cost_so_far[start] = 0while not frontier.empty():current = frontier.get()if current == goal:breakfor next in graph.neighbors(current):new_cost = cost_so_far[current] + graph.cost(current, next)if next not in cost_so_far or new_cost < cost_so_far[next]:# 判断新的总移动成本,cost_so_far[next] = new_costpriority = new_costfrontier.put(next, priority)came_from[next] = current

与广度优先搜索算法一样,Dijkstra 算法能保证最终找到最优的路径,而 Dijkstra 算法相比广度优先搜索节省了大量的计算时间。

4. 启发式优先搜索(Heuristic)

前面提到的广度优先搜索和 D i j k s t r a Dijkstra Dijkstra 算法适合于找单个起点到多个节点的路径;而如果是找单个起点到具体某一个节点的路径,则由于我们的目标很明确,我们希望从目标节点中获取启发信息,例如在探索节点时,优先探索距离目标点更近的节点。当然,这里的“距离近”并不一定是真实距离,它为待探索边界的优先顺序提供了一定的启发信息。

例如:这里用当前点与目标点之间的曼哈顿距离作为启发信息:

def heuristic(a, b):# Manhattan distance on a square gridreturn abs(a.x - b.x) + abs(a.y - b.y) # 这里用的简答的曼哈顿距离

4.1 贪心最佳优先搜索

在启发式搜索方法中,最简单易实现的是贪心最佳优先搜索(Greedy Best First Search, GBFS),即优先探索距离目标最“近”的节点,在一些情况下,该算法的效率极高,但对于较为复杂(待障碍物等)的图搜索问题,该算法往往不能保证找到最优的路径

算法逻辑其实就是在广度优先搜索 B F S BFS BFS 算法上,增加启发信息 h e u r i s t i c heuristic heuristic,具体的伪代码如下:

frontier = PriorityQueue()
frontier.put(start, 0)
came_from = dict()
came_from[start] = Nonewhile not frontier.empty():current = frontier.get()if current == goal:breakfor next in graph.neighbors(current):if next not in came_from:priority = heuristic(goal, next)frontier.put(next, priority)came_from[next] = current

对于节点到目标点的估计距离,常常用符号 h ( n ) h(n) h(n) 进行表示。

4.2 A*搜索

前面提到的三种图搜索算法都各有优势,而 A* 算法简单而言,就是既学 Dijkstra 算法参考已产生的累积代价,又学了贪心最佳优先搜索参考了与目标节点的启发信息。前者能保证找到最优路线,而后者能提高算法的求解效率。

对于图中的每条边 ( x , y ) (x,y) (x,y),用 d ( x , y ) d(x,y) d(x,y) 表示边的长度,用 h ( x ) h(x) h(x) 表示节点 x x x 到目标点的估计距离,如果恒满足 h ( x ) ≤ d ( x , y ) + h ( y ) h(x)\leq d(x,y)+h(y) h(x)d(x,y)+h(y),则可得 f ( x ) = h ( x ) + g ( x ) ≤ g ( x ) + d ( x , y ) + h ( y ) = f ( y ) f(x)=h(x)+g(x)\leq g(x)+d(x,y)+h(y)=f(y) f(x)=h(x)+g(x)g(x)+d(x,y)+h(y)=f(y),此时 h h h 满足三角不等式,可以称之具备一致性,通过一致性的 h h h 函数,能使 A* 算法一定找到最优路径。

具体 A* 算法的计算逻辑伪代码如下:

frontier = PriorityQueue()
frontier.put(start, 0)
came_from = dict()
cost_so_far = dict()
came_from[start] = None
cost_so_far[start] = 0			# 与起点的距离while not frontier.empty():current = frontier.get()if current == goal:breakfor next in graph.neighbors(current):new_cost = cost_so_far[current] + graph.cost(current, next)if next not in cost_so_far or new_cost < cost_so_far[next]:cost_so_far[next] = new_costpriority = new_cost + heuristic(goal, next) # 与目标点的估计距离frontier.put(next, priority)came_from[next] = current

A* 算法综合考虑 g ( n ) g(n) g(n) h ( n ) h(n) h(n),如果 A* 算法中当前点到目标点的估计距离相对于与起点的实际距离很小,与起点的距离主导边界队列的搜索顺序,则 A* 算法表现出 D i j k s t r a Dijkstra Dijkstra 算法的性能;反之,则表现出类似 G B F S GBFS GBFS 的搜索性能。

总体而言, B F S BFS BFS 无差别地探索所有的路径,但是复杂度太高,但适用于目标节点未知(寻宝)的情况; D i j k s t r a Dijkstra Dijkstra 算法能保证找到最短路径,但因为没有用到目标点的信息,在探索方向上会花费大量时间; G B F S GBFS GBFS 仅向着目标点优化,算法的效率很高,但是不能保证找到最优路径;而 A ∗ A^* A 算法既考虑了和起点的距离,也考虑了和目标点的距离(两者求和),在预估函数满足一定条件下,能保证找到最优解,效率比 D i j k s t r a Dijkstra Dijkstra 算法高一些,比 G B F S GBFS GBFS 算法低一些。

这篇关于图搜索的经典启发式算法A星(A*、A Star)算法详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/918402

相关文章

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

详解C#如何提取PDF文档中的图片

《详解C#如何提取PDF文档中的图片》提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使用,下面我们就来看看如何使用C#通过代码从PDF文档中提取图片吧... 当 PDF 文件中包含有价值的图片,如艺术画作、设计素材、报告图表等,提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

Java中StopWatch的使用示例详解

《Java中StopWatch的使用示例详解》stopWatch是org.springframework.util包下的一个工具类,使用它可直观的输出代码执行耗时,以及执行时间百分比,这篇文章主要介绍... 目录stopWatch 是org.springframework.util 包下的一个工具类,使用它

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML