图搜索的经典启发式算法A星(A*、A Star)算法详解

2024-04-19 20:04

本文主要是介绍图搜索的经典启发式算法A星(A*、A Star)算法详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1. 引言
  • 2. 广度优先搜索
  • 3. Dijkstra 算法
  • 4. 启发式优先搜索(Heuristic)
    • 4.1 贪心最佳优先搜索
    • 4.2 A*搜索


1. 引言

在许多场景中,我们常会遇到一类问题,即“找到一个位置到另一个位置的距离最短(用时最少)的路径”,解决这类问题可以将实际问题映射到一张网络图上,并通过图搜索算法进行求解,这里所说的图搜索算法指的是一系列基于图的算法,而本文将介绍的 A* 算法是其中最为流行的启发式搜索算法,由于 A* 算法结合了其他的基础图搜索的特点,因此本文将从最简单的图搜索算法“广度优先搜索”开始介绍,逐步扩展至 A* 算法。

在这里插入图片描述

刚才提到,图搜索算法都需要基于一张图,即将实际的复杂的地图映射成具有固定节点( N o d e s Nodes Nodes)和边( E d g e s Edges Edges)的图( G r a p h Graph Graph),有些边是有方向限制的,为弧 A r c s Arcs Arcs。具体的映射方式很多,即同样一张地图,可以映射成具有 10 10 10 个节点的路线图,也可以映射成 100 100 100 个节点的网格图,在求解过程中,节点数越多的图的求解时间越长,尽管它在一定程度上更能近似于实际情况且更易处理。

2. 广度优先搜索

广度优先搜索(Breadth First Search, BFS)原本是一种在树形数据结构中搜索满足给定属性的节点的算法,后在 1961 年由 CY Lee 等人开发成一种路径搜索算法。

在图搜索中,有一个称为待探索边界 f r o n t i e r frontier frontier 的概念,即图搜索算法基于起点,不断地推进待探索边界,直到该边界触碰到目标点时结束,而由于该算法的特点是在所有方向上平等地探索,因此这个推进待探索边界的过程也被称为“洪水填充 ( f l o o d f i l l ) (flood\ fill) (flood fill)”,该算法由于简单易实现的特性,在许多寻路和图分析场景都有应用,具体如下图所示。

在这里插入图片描述

这里的 f r o n t i e r frontier frontier 在代码实现中,是一个待探索的节点队列。队列的初始元素为起始点,基于起始点向前一步探索(下一步可以走到哪些节点),将这些相邻节点扩展到 f r o n t i e r frontier frontier 队列当中,以此类推。每扩展一个节点,记录下该节点的父节点,方便在探索到目标节点后,返回出最优路线。该算法在路径搜索问题上的逻辑如下(伪代码):

frontier = Queue() 			# 生成一个队列
frontier.put(start)			# 以起点作为开始
came_from = dict() 			# path A->B 存储为 came_from[B] == A
came_from[start] = None		# 存储每个节点的上一个位置while not frontier.empty(): # 只要边界队列不为空就循环下去current = frontier.get() # 从边界中取出一个点if current = goal:		# 算法终止机制,判断当前节点是否为目标点break					# 路径长度限制、遍历的点数、寻到的目标点数......都可以是终止约束for next in graph.neighbors(current): # 基于这个点向相邻的点进行扩展if next not in came_from: # 只要这个扩展的点不曾遍历到,就添加到边界中和已遍历节点集合中frontier.put(next)came_from[next] = current# 获得最有路线
current = goal 
path = []
while current != start: path.append(current) # 从目标点回溯到起点current = came_from[current]
path.append(start)
path.reverse() 			# optional 获得最优路线

3. Dijkstra 算法

前文的广度优先搜索算法,在待探索边界上,以同样的权重按顺序地推进待探索边界,即认为每个边的权重是一致的,但在实际的许多场景中,连接节点的边的权重往往并不相同,显然,在相同的探索深度下,累计代价最小的节点有更大的概率探索到总代价 g ( n ) g(n) g(n) 小的路线,因此基于广度优先搜索的思路,将待探索边界从普通队列变更为优先队列,评估优先顺序时考虑当前节点到起始点的距离(成本)。

常常用 g ( n ) g(n) g(n) 表示从起始节点到 n n n 节点的路径成本。

由于 Dijkstra 算法带有权重地进行探索,改变了 f r o n t i e r frontier frontier 的推进方向,因此有可能出现多次(不同路线)探索同一个节点的情况,对于已经探索过的节点,如果新路线的累积代价更小,则更新该节点的信息。基于 Dijkstra 算法的伪代码如下:

frontier = PriorityQueue()			# 生成优先队列
frontier.put(start, 0)				# 优先遍历队列中优先度更好(小)的节点
came_from = dict()
cost_so_far = dict()				# 存储节点和起点之间的距离
came_from[start] = None
cost_so_far[start] = 0while not frontier.empty():current = frontier.get()if current == goal:breakfor next in graph.neighbors(current):new_cost = cost_so_far[current] + graph.cost(current, next)if next not in cost_so_far or new_cost < cost_so_far[next]:# 判断新的总移动成本,cost_so_far[next] = new_costpriority = new_costfrontier.put(next, priority)came_from[next] = current

与广度优先搜索算法一样,Dijkstra 算法能保证最终找到最优的路径,而 Dijkstra 算法相比广度优先搜索节省了大量的计算时间。

4. 启发式优先搜索(Heuristic)

前面提到的广度优先搜索和 D i j k s t r a Dijkstra Dijkstra 算法适合于找单个起点到多个节点的路径;而如果是找单个起点到具体某一个节点的路径,则由于我们的目标很明确,我们希望从目标节点中获取启发信息,例如在探索节点时,优先探索距离目标点更近的节点。当然,这里的“距离近”并不一定是真实距离,它为待探索边界的优先顺序提供了一定的启发信息。

例如:这里用当前点与目标点之间的曼哈顿距离作为启发信息:

def heuristic(a, b):# Manhattan distance on a square gridreturn abs(a.x - b.x) + abs(a.y - b.y) # 这里用的简答的曼哈顿距离

4.1 贪心最佳优先搜索

在启发式搜索方法中,最简单易实现的是贪心最佳优先搜索(Greedy Best First Search, GBFS),即优先探索距离目标最“近”的节点,在一些情况下,该算法的效率极高,但对于较为复杂(待障碍物等)的图搜索问题,该算法往往不能保证找到最优的路径

算法逻辑其实就是在广度优先搜索 B F S BFS BFS 算法上,增加启发信息 h e u r i s t i c heuristic heuristic,具体的伪代码如下:

frontier = PriorityQueue()
frontier.put(start, 0)
came_from = dict()
came_from[start] = Nonewhile not frontier.empty():current = frontier.get()if current == goal:breakfor next in graph.neighbors(current):if next not in came_from:priority = heuristic(goal, next)frontier.put(next, priority)came_from[next] = current

对于节点到目标点的估计距离,常常用符号 h ( n ) h(n) h(n) 进行表示。

4.2 A*搜索

前面提到的三种图搜索算法都各有优势,而 A* 算法简单而言,就是既学 Dijkstra 算法参考已产生的累积代价,又学了贪心最佳优先搜索参考了与目标节点的启发信息。前者能保证找到最优路线,而后者能提高算法的求解效率。

对于图中的每条边 ( x , y ) (x,y) (x,y),用 d ( x , y ) d(x,y) d(x,y) 表示边的长度,用 h ( x ) h(x) h(x) 表示节点 x x x 到目标点的估计距离,如果恒满足 h ( x ) ≤ d ( x , y ) + h ( y ) h(x)\leq d(x,y)+h(y) h(x)d(x,y)+h(y),则可得 f ( x ) = h ( x ) + g ( x ) ≤ g ( x ) + d ( x , y ) + h ( y ) = f ( y ) f(x)=h(x)+g(x)\leq g(x)+d(x,y)+h(y)=f(y) f(x)=h(x)+g(x)g(x)+d(x,y)+h(y)=f(y),此时 h h h 满足三角不等式,可以称之具备一致性,通过一致性的 h h h 函数,能使 A* 算法一定找到最优路径。

具体 A* 算法的计算逻辑伪代码如下:

frontier = PriorityQueue()
frontier.put(start, 0)
came_from = dict()
cost_so_far = dict()
came_from[start] = None
cost_so_far[start] = 0			# 与起点的距离while not frontier.empty():current = frontier.get()if current == goal:breakfor next in graph.neighbors(current):new_cost = cost_so_far[current] + graph.cost(current, next)if next not in cost_so_far or new_cost < cost_so_far[next]:cost_so_far[next] = new_costpriority = new_cost + heuristic(goal, next) # 与目标点的估计距离frontier.put(next, priority)came_from[next] = current

A* 算法综合考虑 g ( n ) g(n) g(n) h ( n ) h(n) h(n),如果 A* 算法中当前点到目标点的估计距离相对于与起点的实际距离很小,与起点的距离主导边界队列的搜索顺序,则 A* 算法表现出 D i j k s t r a Dijkstra Dijkstra 算法的性能;反之,则表现出类似 G B F S GBFS GBFS 的搜索性能。

总体而言, B F S BFS BFS 无差别地探索所有的路径,但是复杂度太高,但适用于目标节点未知(寻宝)的情况; D i j k s t r a Dijkstra Dijkstra 算法能保证找到最短路径,但因为没有用到目标点的信息,在探索方向上会花费大量时间; G B F S GBFS GBFS 仅向着目标点优化,算法的效率很高,但是不能保证找到最优路径;而 A ∗ A^* A 算法既考虑了和起点的距离,也考虑了和目标点的距离(两者求和),在预估函数满足一定条件下,能保证找到最优解,效率比 D i j k s t r a Dijkstra Dijkstra 算法高一些,比 G B F S GBFS GBFS 算法低一些。

这篇关于图搜索的经典启发式算法A星(A*、A Star)算法详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/918402

相关文章

Spring Boot中的路径变量示例详解

《SpringBoot中的路径变量示例详解》SpringBoot中PathVariable通过@PathVariable注解实现URL参数与方法参数绑定,支持多参数接收、类型转换、可选参数、默认值及... 目录一. 基本用法与参数映射1.路径定义2.参数绑定&nhttp://www.chinasem.cnbs

MySql基本查询之表的增删查改+聚合函数案例详解

《MySql基本查询之表的增删查改+聚合函数案例详解》本文详解SQL的CURD操作INSERT用于数据插入(单行/多行及冲突处理),SELECT实现数据检索(列选择、条件过滤、排序分页),UPDATE... 目录一、Create1.1 单行数据 + 全列插入1.2 多行数据 + 指定列插入1.3 插入否则更

Redis中Stream详解及应用小结

《Redis中Stream详解及应用小结》RedisStreams是Redis5.0引入的新功能,提供了一种类似于传统消息队列的机制,但具有更高的灵活性和可扩展性,本文给大家介绍Redis中Strea... 目录1. Redis Stream 概述2. Redis Stream 的基本操作2.1. XADD

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命

Java JDK1.8 安装和环境配置教程详解

《JavaJDK1.8安装和环境配置教程详解》文章简要介绍了JDK1.8的安装流程,包括官网下载对应系统版本、安装时选择非系统盘路径、配置JAVA_HOME、CLASSPATH和Path环境变量,... 目录1.下载JDK2.安装JDK3.配置环境变量4.检验JDK官网下载地址:Java Downloads

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

Spring Boot spring-boot-maven-plugin 参数配置详解(最新推荐)

《SpringBootspring-boot-maven-plugin参数配置详解(最新推荐)》文章介绍了SpringBootMaven插件的5个核心目标(repackage、run、start... 目录一 spring-boot-maven-plugin 插件的5个Goals二 应用场景1 重新打包应用

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数