图搜索的经典启发式算法A星(A*、A Star)算法详解

2024-04-19 20:04

本文主要是介绍图搜索的经典启发式算法A星(A*、A Star)算法详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1. 引言
  • 2. 广度优先搜索
  • 3. Dijkstra 算法
  • 4. 启发式优先搜索(Heuristic)
    • 4.1 贪心最佳优先搜索
    • 4.2 A*搜索


1. 引言

在许多场景中,我们常会遇到一类问题,即“找到一个位置到另一个位置的距离最短(用时最少)的路径”,解决这类问题可以将实际问题映射到一张网络图上,并通过图搜索算法进行求解,这里所说的图搜索算法指的是一系列基于图的算法,而本文将介绍的 A* 算法是其中最为流行的启发式搜索算法,由于 A* 算法结合了其他的基础图搜索的特点,因此本文将从最简单的图搜索算法“广度优先搜索”开始介绍,逐步扩展至 A* 算法。

在这里插入图片描述

刚才提到,图搜索算法都需要基于一张图,即将实际的复杂的地图映射成具有固定节点( N o d e s Nodes Nodes)和边( E d g e s Edges Edges)的图( G r a p h Graph Graph),有些边是有方向限制的,为弧 A r c s Arcs Arcs。具体的映射方式很多,即同样一张地图,可以映射成具有 10 10 10 个节点的路线图,也可以映射成 100 100 100 个节点的网格图,在求解过程中,节点数越多的图的求解时间越长,尽管它在一定程度上更能近似于实际情况且更易处理。

2. 广度优先搜索

广度优先搜索(Breadth First Search, BFS)原本是一种在树形数据结构中搜索满足给定属性的节点的算法,后在 1961 年由 CY Lee 等人开发成一种路径搜索算法。

在图搜索中,有一个称为待探索边界 f r o n t i e r frontier frontier 的概念,即图搜索算法基于起点,不断地推进待探索边界,直到该边界触碰到目标点时结束,而由于该算法的特点是在所有方向上平等地探索,因此这个推进待探索边界的过程也被称为“洪水填充 ( f l o o d f i l l ) (flood\ fill) (flood fill)”,该算法由于简单易实现的特性,在许多寻路和图分析场景都有应用,具体如下图所示。

在这里插入图片描述

这里的 f r o n t i e r frontier frontier 在代码实现中,是一个待探索的节点队列。队列的初始元素为起始点,基于起始点向前一步探索(下一步可以走到哪些节点),将这些相邻节点扩展到 f r o n t i e r frontier frontier 队列当中,以此类推。每扩展一个节点,记录下该节点的父节点,方便在探索到目标节点后,返回出最优路线。该算法在路径搜索问题上的逻辑如下(伪代码):

frontier = Queue() 			# 生成一个队列
frontier.put(start)			# 以起点作为开始
came_from = dict() 			# path A->B 存储为 came_from[B] == A
came_from[start] = None		# 存储每个节点的上一个位置while not frontier.empty(): # 只要边界队列不为空就循环下去current = frontier.get() # 从边界中取出一个点if current = goal:		# 算法终止机制,判断当前节点是否为目标点break					# 路径长度限制、遍历的点数、寻到的目标点数......都可以是终止约束for next in graph.neighbors(current): # 基于这个点向相邻的点进行扩展if next not in came_from: # 只要这个扩展的点不曾遍历到,就添加到边界中和已遍历节点集合中frontier.put(next)came_from[next] = current# 获得最有路线
current = goal 
path = []
while current != start: path.append(current) # 从目标点回溯到起点current = came_from[current]
path.append(start)
path.reverse() 			# optional 获得最优路线

3. Dijkstra 算法

前文的广度优先搜索算法,在待探索边界上,以同样的权重按顺序地推进待探索边界,即认为每个边的权重是一致的,但在实际的许多场景中,连接节点的边的权重往往并不相同,显然,在相同的探索深度下,累计代价最小的节点有更大的概率探索到总代价 g ( n ) g(n) g(n) 小的路线,因此基于广度优先搜索的思路,将待探索边界从普通队列变更为优先队列,评估优先顺序时考虑当前节点到起始点的距离(成本)。

常常用 g ( n ) g(n) g(n) 表示从起始节点到 n n n 节点的路径成本。

由于 Dijkstra 算法带有权重地进行探索,改变了 f r o n t i e r frontier frontier 的推进方向,因此有可能出现多次(不同路线)探索同一个节点的情况,对于已经探索过的节点,如果新路线的累积代价更小,则更新该节点的信息。基于 Dijkstra 算法的伪代码如下:

frontier = PriorityQueue()			# 生成优先队列
frontier.put(start, 0)				# 优先遍历队列中优先度更好(小)的节点
came_from = dict()
cost_so_far = dict()				# 存储节点和起点之间的距离
came_from[start] = None
cost_so_far[start] = 0while not frontier.empty():current = frontier.get()if current == goal:breakfor next in graph.neighbors(current):new_cost = cost_so_far[current] + graph.cost(current, next)if next not in cost_so_far or new_cost < cost_so_far[next]:# 判断新的总移动成本,cost_so_far[next] = new_costpriority = new_costfrontier.put(next, priority)came_from[next] = current

与广度优先搜索算法一样,Dijkstra 算法能保证最终找到最优的路径,而 Dijkstra 算法相比广度优先搜索节省了大量的计算时间。

4. 启发式优先搜索(Heuristic)

前面提到的广度优先搜索和 D i j k s t r a Dijkstra Dijkstra 算法适合于找单个起点到多个节点的路径;而如果是找单个起点到具体某一个节点的路径,则由于我们的目标很明确,我们希望从目标节点中获取启发信息,例如在探索节点时,优先探索距离目标点更近的节点。当然,这里的“距离近”并不一定是真实距离,它为待探索边界的优先顺序提供了一定的启发信息。

例如:这里用当前点与目标点之间的曼哈顿距离作为启发信息:

def heuristic(a, b):# Manhattan distance on a square gridreturn abs(a.x - b.x) + abs(a.y - b.y) # 这里用的简答的曼哈顿距离

4.1 贪心最佳优先搜索

在启发式搜索方法中,最简单易实现的是贪心最佳优先搜索(Greedy Best First Search, GBFS),即优先探索距离目标最“近”的节点,在一些情况下,该算法的效率极高,但对于较为复杂(待障碍物等)的图搜索问题,该算法往往不能保证找到最优的路径

算法逻辑其实就是在广度优先搜索 B F S BFS BFS 算法上,增加启发信息 h e u r i s t i c heuristic heuristic,具体的伪代码如下:

frontier = PriorityQueue()
frontier.put(start, 0)
came_from = dict()
came_from[start] = Nonewhile not frontier.empty():current = frontier.get()if current == goal:breakfor next in graph.neighbors(current):if next not in came_from:priority = heuristic(goal, next)frontier.put(next, priority)came_from[next] = current

对于节点到目标点的估计距离,常常用符号 h ( n ) h(n) h(n) 进行表示。

4.2 A*搜索

前面提到的三种图搜索算法都各有优势,而 A* 算法简单而言,就是既学 Dijkstra 算法参考已产生的累积代价,又学了贪心最佳优先搜索参考了与目标节点的启发信息。前者能保证找到最优路线,而后者能提高算法的求解效率。

对于图中的每条边 ( x , y ) (x,y) (x,y),用 d ( x , y ) d(x,y) d(x,y) 表示边的长度,用 h ( x ) h(x) h(x) 表示节点 x x x 到目标点的估计距离,如果恒满足 h ( x ) ≤ d ( x , y ) + h ( y ) h(x)\leq d(x,y)+h(y) h(x)d(x,y)+h(y),则可得 f ( x ) = h ( x ) + g ( x ) ≤ g ( x ) + d ( x , y ) + h ( y ) = f ( y ) f(x)=h(x)+g(x)\leq g(x)+d(x,y)+h(y)=f(y) f(x)=h(x)+g(x)g(x)+d(x,y)+h(y)=f(y),此时 h h h 满足三角不等式,可以称之具备一致性,通过一致性的 h h h 函数,能使 A* 算法一定找到最优路径。

具体 A* 算法的计算逻辑伪代码如下:

frontier = PriorityQueue()
frontier.put(start, 0)
came_from = dict()
cost_so_far = dict()
came_from[start] = None
cost_so_far[start] = 0			# 与起点的距离while not frontier.empty():current = frontier.get()if current == goal:breakfor next in graph.neighbors(current):new_cost = cost_so_far[current] + graph.cost(current, next)if next not in cost_so_far or new_cost < cost_so_far[next]:cost_so_far[next] = new_costpriority = new_cost + heuristic(goal, next) # 与目标点的估计距离frontier.put(next, priority)came_from[next] = current

A* 算法综合考虑 g ( n ) g(n) g(n) h ( n ) h(n) h(n),如果 A* 算法中当前点到目标点的估计距离相对于与起点的实际距离很小,与起点的距离主导边界队列的搜索顺序,则 A* 算法表现出 D i j k s t r a Dijkstra Dijkstra 算法的性能;反之,则表现出类似 G B F S GBFS GBFS 的搜索性能。

总体而言, B F S BFS BFS 无差别地探索所有的路径,但是复杂度太高,但适用于目标节点未知(寻宝)的情况; D i j k s t r a Dijkstra Dijkstra 算法能保证找到最短路径,但因为没有用到目标点的信息,在探索方向上会花费大量时间; G B F S GBFS GBFS 仅向着目标点优化,算法的效率很高,但是不能保证找到最优路径;而 A ∗ A^* A 算法既考虑了和起点的距离,也考虑了和目标点的距离(两者求和),在预估函数满足一定条件下,能保证找到最优解,效率比 D i j k s t r a Dijkstra Dijkstra 算法高一些,比 G B F S GBFS GBFS 算法低一些。

这篇关于图搜索的经典启发式算法A星(A*、A Star)算法详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/918402

相关文章

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

MySQL的JDBC编程详解

《MySQL的JDBC编程详解》:本文主要介绍MySQL的JDBC编程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、前置知识1. 引入依赖2. 认识 url二、JDBC 操作流程1. JDBC 的写操作2. JDBC 的读操作总结前言本文介绍了mysq

Redis 的 SUBSCRIBE命令详解

《Redis的SUBSCRIBE命令详解》Redis的SUBSCRIBE命令用于订阅一个或多个频道,以便接收发送到这些频道的消息,本文给大家介绍Redis的SUBSCRIBE命令,感兴趣的朋友跟随... 目录基本语法工作原理示例消息格式相关命令python 示例Redis 的 SUBSCRIBE 命令用于订

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

SpringBoot日志级别与日志分组详解

《SpringBoot日志级别与日志分组详解》文章介绍了日志级别(ALL至OFF)及其作用,说明SpringBoot默认日志级别为INFO,可通过application.properties调整全局或... 目录日志级别1、级别内容2、调整日志级别调整默认日志级别调整指定类的日志级别项目开发过程中,利用日志

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

MySQL8 密码强度评估与配置详解

《MySQL8密码强度评估与配置详解》MySQL8默认启用密码强度插件,实施MEDIUM策略(长度8、含数字/字母/特殊字符),支持动态调整与配置文件设置,推荐使用STRONG策略并定期更新密码以提... 目录一、mysql 8 密码强度评估机制1.核心插件:validate_password2.密码策略级

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

详解python pycharm与cmd中制表符不一样

《详解pythonpycharm与cmd中制表符不一样》本文主要介绍了pythonpycharm与cmd中制表符不一样,这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽... 这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽度不同导致的。在PyChar