图搜索的经典启发式算法A星(A*、A Star)算法详解

2024-04-19 20:04

本文主要是介绍图搜索的经典启发式算法A星(A*、A Star)算法详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1. 引言
  • 2. 广度优先搜索
  • 3. Dijkstra 算法
  • 4. 启发式优先搜索(Heuristic)
    • 4.1 贪心最佳优先搜索
    • 4.2 A*搜索


1. 引言

在许多场景中,我们常会遇到一类问题,即“找到一个位置到另一个位置的距离最短(用时最少)的路径”,解决这类问题可以将实际问题映射到一张网络图上,并通过图搜索算法进行求解,这里所说的图搜索算法指的是一系列基于图的算法,而本文将介绍的 A* 算法是其中最为流行的启发式搜索算法,由于 A* 算法结合了其他的基础图搜索的特点,因此本文将从最简单的图搜索算法“广度优先搜索”开始介绍,逐步扩展至 A* 算法。

在这里插入图片描述

刚才提到,图搜索算法都需要基于一张图,即将实际的复杂的地图映射成具有固定节点( N o d e s Nodes Nodes)和边( E d g e s Edges Edges)的图( G r a p h Graph Graph),有些边是有方向限制的,为弧 A r c s Arcs Arcs。具体的映射方式很多,即同样一张地图,可以映射成具有 10 10 10 个节点的路线图,也可以映射成 100 100 100 个节点的网格图,在求解过程中,节点数越多的图的求解时间越长,尽管它在一定程度上更能近似于实际情况且更易处理。

2. 广度优先搜索

广度优先搜索(Breadth First Search, BFS)原本是一种在树形数据结构中搜索满足给定属性的节点的算法,后在 1961 年由 CY Lee 等人开发成一种路径搜索算法。

在图搜索中,有一个称为待探索边界 f r o n t i e r frontier frontier 的概念,即图搜索算法基于起点,不断地推进待探索边界,直到该边界触碰到目标点时结束,而由于该算法的特点是在所有方向上平等地探索,因此这个推进待探索边界的过程也被称为“洪水填充 ( f l o o d f i l l ) (flood\ fill) (flood fill)”,该算法由于简单易实现的特性,在许多寻路和图分析场景都有应用,具体如下图所示。

在这里插入图片描述

这里的 f r o n t i e r frontier frontier 在代码实现中,是一个待探索的节点队列。队列的初始元素为起始点,基于起始点向前一步探索(下一步可以走到哪些节点),将这些相邻节点扩展到 f r o n t i e r frontier frontier 队列当中,以此类推。每扩展一个节点,记录下该节点的父节点,方便在探索到目标节点后,返回出最优路线。该算法在路径搜索问题上的逻辑如下(伪代码):

frontier = Queue() 			# 生成一个队列
frontier.put(start)			# 以起点作为开始
came_from = dict() 			# path A->B 存储为 came_from[B] == A
came_from[start] = None		# 存储每个节点的上一个位置while not frontier.empty(): # 只要边界队列不为空就循环下去current = frontier.get() # 从边界中取出一个点if current = goal:		# 算法终止机制,判断当前节点是否为目标点break					# 路径长度限制、遍历的点数、寻到的目标点数......都可以是终止约束for next in graph.neighbors(current): # 基于这个点向相邻的点进行扩展if next not in came_from: # 只要这个扩展的点不曾遍历到,就添加到边界中和已遍历节点集合中frontier.put(next)came_from[next] = current# 获得最有路线
current = goal 
path = []
while current != start: path.append(current) # 从目标点回溯到起点current = came_from[current]
path.append(start)
path.reverse() 			# optional 获得最优路线

3. Dijkstra 算法

前文的广度优先搜索算法,在待探索边界上,以同样的权重按顺序地推进待探索边界,即认为每个边的权重是一致的,但在实际的许多场景中,连接节点的边的权重往往并不相同,显然,在相同的探索深度下,累计代价最小的节点有更大的概率探索到总代价 g ( n ) g(n) g(n) 小的路线,因此基于广度优先搜索的思路,将待探索边界从普通队列变更为优先队列,评估优先顺序时考虑当前节点到起始点的距离(成本)。

常常用 g ( n ) g(n) g(n) 表示从起始节点到 n n n 节点的路径成本。

由于 Dijkstra 算法带有权重地进行探索,改变了 f r o n t i e r frontier frontier 的推进方向,因此有可能出现多次(不同路线)探索同一个节点的情况,对于已经探索过的节点,如果新路线的累积代价更小,则更新该节点的信息。基于 Dijkstra 算法的伪代码如下:

frontier = PriorityQueue()			# 生成优先队列
frontier.put(start, 0)				# 优先遍历队列中优先度更好(小)的节点
came_from = dict()
cost_so_far = dict()				# 存储节点和起点之间的距离
came_from[start] = None
cost_so_far[start] = 0while not frontier.empty():current = frontier.get()if current == goal:breakfor next in graph.neighbors(current):new_cost = cost_so_far[current] + graph.cost(current, next)if next not in cost_so_far or new_cost < cost_so_far[next]:# 判断新的总移动成本,cost_so_far[next] = new_costpriority = new_costfrontier.put(next, priority)came_from[next] = current

与广度优先搜索算法一样,Dijkstra 算法能保证最终找到最优的路径,而 Dijkstra 算法相比广度优先搜索节省了大量的计算时间。

4. 启发式优先搜索(Heuristic)

前面提到的广度优先搜索和 D i j k s t r a Dijkstra Dijkstra 算法适合于找单个起点到多个节点的路径;而如果是找单个起点到具体某一个节点的路径,则由于我们的目标很明确,我们希望从目标节点中获取启发信息,例如在探索节点时,优先探索距离目标点更近的节点。当然,这里的“距离近”并不一定是真实距离,它为待探索边界的优先顺序提供了一定的启发信息。

例如:这里用当前点与目标点之间的曼哈顿距离作为启发信息:

def heuristic(a, b):# Manhattan distance on a square gridreturn abs(a.x - b.x) + abs(a.y - b.y) # 这里用的简答的曼哈顿距离

4.1 贪心最佳优先搜索

在启发式搜索方法中,最简单易实现的是贪心最佳优先搜索(Greedy Best First Search, GBFS),即优先探索距离目标最“近”的节点,在一些情况下,该算法的效率极高,但对于较为复杂(待障碍物等)的图搜索问题,该算法往往不能保证找到最优的路径

算法逻辑其实就是在广度优先搜索 B F S BFS BFS 算法上,增加启发信息 h e u r i s t i c heuristic heuristic,具体的伪代码如下:

frontier = PriorityQueue()
frontier.put(start, 0)
came_from = dict()
came_from[start] = Nonewhile not frontier.empty():current = frontier.get()if current == goal:breakfor next in graph.neighbors(current):if next not in came_from:priority = heuristic(goal, next)frontier.put(next, priority)came_from[next] = current

对于节点到目标点的估计距离,常常用符号 h ( n ) h(n) h(n) 进行表示。

4.2 A*搜索

前面提到的三种图搜索算法都各有优势,而 A* 算法简单而言,就是既学 Dijkstra 算法参考已产生的累积代价,又学了贪心最佳优先搜索参考了与目标节点的启发信息。前者能保证找到最优路线,而后者能提高算法的求解效率。

对于图中的每条边 ( x , y ) (x,y) (x,y),用 d ( x , y ) d(x,y) d(x,y) 表示边的长度,用 h ( x ) h(x) h(x) 表示节点 x x x 到目标点的估计距离,如果恒满足 h ( x ) ≤ d ( x , y ) + h ( y ) h(x)\leq d(x,y)+h(y) h(x)d(x,y)+h(y),则可得 f ( x ) = h ( x ) + g ( x ) ≤ g ( x ) + d ( x , y ) + h ( y ) = f ( y ) f(x)=h(x)+g(x)\leq g(x)+d(x,y)+h(y)=f(y) f(x)=h(x)+g(x)g(x)+d(x,y)+h(y)=f(y),此时 h h h 满足三角不等式,可以称之具备一致性,通过一致性的 h h h 函数,能使 A* 算法一定找到最优路径。

具体 A* 算法的计算逻辑伪代码如下:

frontier = PriorityQueue()
frontier.put(start, 0)
came_from = dict()
cost_so_far = dict()
came_from[start] = None
cost_so_far[start] = 0			# 与起点的距离while not frontier.empty():current = frontier.get()if current == goal:breakfor next in graph.neighbors(current):new_cost = cost_so_far[current] + graph.cost(current, next)if next not in cost_so_far or new_cost < cost_so_far[next]:cost_so_far[next] = new_costpriority = new_cost + heuristic(goal, next) # 与目标点的估计距离frontier.put(next, priority)came_from[next] = current

A* 算法综合考虑 g ( n ) g(n) g(n) h ( n ) h(n) h(n),如果 A* 算法中当前点到目标点的估计距离相对于与起点的实际距离很小,与起点的距离主导边界队列的搜索顺序,则 A* 算法表现出 D i j k s t r a Dijkstra Dijkstra 算法的性能;反之,则表现出类似 G B F S GBFS GBFS 的搜索性能。

总体而言, B F S BFS BFS 无差别地探索所有的路径,但是复杂度太高,但适用于目标节点未知(寻宝)的情况; D i j k s t r a Dijkstra Dijkstra 算法能保证找到最短路径,但因为没有用到目标点的信息,在探索方向上会花费大量时间; G B F S GBFS GBFS 仅向着目标点优化,算法的效率很高,但是不能保证找到最优路径;而 A ∗ A^* A 算法既考虑了和起点的距离,也考虑了和目标点的距离(两者求和),在预估函数满足一定条件下,能保证找到最优解,效率比 D i j k s t r a Dijkstra Dijkstra 算法高一些,比 G B F S GBFS GBFS 算法低一些。

这篇关于图搜索的经典启发式算法A星(A*、A Star)算法详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/918402

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

hdu1240、hdu1253(三维搜索题)

1、从后往前输入,(x,y,z); 2、从下往上输入,(y , z, x); 3、从左往右输入,(z,x,y); hdu1240代码如下: #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#inc

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO