【Yolov系列】Yolov5学习(一)补充1.1:自适应锚框计算

2024-04-19 18:28

本文主要是介绍【Yolov系列】Yolov5学习(一)补充1.1:自适应锚框计算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、Yolov5的网络结构

  • Yolov5中使用的Coco数据集输入图片的尺寸为640*640,但是训练过程的输入尺寸并不唯一,Yolov5可以采用Mosaic增强技术把4张图片的部分组成了一张尺寸一定的输入图片。如果需要使用预训练权重,最好将输入图片尺寸调整到与作者相同的尺寸,输入图片尺寸必须是32的倍数,这与anchor检测的阶段有关。

Yolov5s网络结构示意图:

  • 当输入尺寸为640*640时,会得到3个不同尺度的输出:80x80(640/8)、40x40(640/16)、20x20(640/32)。
anchors:- [10, 13, 16, 30, 33, 23] # P3/8- [30, 61, 62, 45, 59, 119] # P4/16- [116, 90, 156, 198, 373, 326] # P5/32
  • anchors参数共有三行,每行6个数值,代表应用不同的特征图:
  1. 第一行是在最大的特征图上的锚框,80x80代表浅层的特征图(P3),包含较多的低层级信息,适合用于检测小目标,所以这一特征图所用的anchor尺度较小;
  2. 第二行是在中间的特征图上的锚框,40x40代表中间的特征图(P4),介于浅层和深层这两个尺度之间的anchor用来检测中等大小的目标;
  3. 第三行是在最小的特征图上的锚框,20x20代表深层的特征图(P5),包含更多高层级的信息,如轮廓、结构等信息,适合用于大目标的检测,所以这一特征图所用的anchor尺度较大。

待验证注释:

查阅其他博主博客发现,Yolov5也可以不预设anchor,直接写个3,此时yolov5就会自动按照训练集聚类anchor:

# Parameters
nc: 4 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
anchors: 3

在目标检测任务中,一般希望在大的特征图上去检测小目标,因为大特征图含有更多小目标信息,因此大特征图上的anchor数值通常设置为小数值,而小特征图上数值设置为大数值检测大的目标,yolov5之所以能高效快速地检测跨尺度目标,这种对不同特征图使用不同尺度的anchor的思想功不可没。

2、自适应锚框计算

  • Yolov5 中并不是只使用默认锚定框,在开始训练之前会对数据集中标注信息进行核查,计算此数据集标注信息针对默认锚定框的最佳召回率。当最佳召回率大于或等于0.98,则不需要更新锚定框;如果最佳召回率小于0.98,则需要重新计算符合此数据集的锚定框。
  • 核查锚定框是否适合要求的函数在 ./utils/autoanchor.py 文件中:
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
"""AutoAnchor utils."""import randomimport numpy as np
import torch
import yaml
from tqdm import tqdmfrom utils import TryExcept
from utils.general import LOGGER, TQDM_BAR_FORMAT, colorstrPREFIX = colorstr("AutoAnchor: ")def check_anchor_order(m):"""Checks and corrects anchor order against stride in YOLOv5 Detect() module if necessary."""a = m.anchors.prod(-1).mean(-1).view(-1)  # mean anchor area per output layerda = a[-1] - a[0]  # delta ads = m.stride[-1] - m.stride[0]  # delta sif da and (da.sign() != ds.sign()):  # same orderLOGGER.info(f"{PREFIX}Reversing anchor order")m.anchors[:] = m.anchors.flip(0)@TryExcept(f"{PREFIX}ERROR")
def check_anchors(dataset, model, thr=4.0, imgsz=640):"""Evaluates anchor fit to dataset and adjusts if necessary, supporting customizable threshold and image size."""m = model.module.model[-1] if hasattr(model, "module") else model.model[-1]  # Detect()shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1))  # augment scalewh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float()  # whdef metric(k):  # compute metricr = wh[:, None] / k[None]x = torch.min(r, 1 / r).min(2)[0]  # ratio metricbest = x.max(1)[0]  # best_xaat = (x > 1 / thr).float().sum(1).mean()  # anchors above thresholdbpr = (best > 1 / thr).float().mean()  # best possible recallreturn bpr, aatstride = m.stride.to(m.anchors.device).view(-1, 1, 1)  # model stridesanchors = m.anchors.clone() * stride  # current anchorsbpr, aat = metric(anchors.cpu().view(-1, 2))s = f"\n{PREFIX}{aat:.2f} anchors/target, {bpr:.3f} Best Possible Recall (BPR). "if bpr > 0.98:  # threshold to recomputeLOGGER.info(f"{s}Current anchors are a good fit to dataset ✅")else:LOGGER.info(f"{s}Anchors are a poor fit to dataset ⚠️, attempting to improve...")na = m.anchors.numel() // 2  # number of anchorsanchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)new_bpr = metric(anchors)[0]if new_bpr > bpr:  # replace anchorsanchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)m.anchors[:] = anchors.clone().view_as(m.anchors)check_anchor_order(m)  # must be in pixel-space (not grid-space)m.anchors /= strides = f"{PREFIX}Done ✅ (optional: update model *.yaml to use these anchors in the future)"else:s = f"{PREFIX}Done ⚠️ (original anchors better than new anchors, proceeding with original anchors)"LOGGER.info(s)def kmean_anchors(dataset="./data/coco128.yaml", n=9, img_size=640, thr=4.0, gen=1000, verbose=True):"""Creates kmeans-evolved anchors from training dataset.Arguments:dataset: path to data.yaml, or a loaded datasetn: number of anchorsimg_size: image size used for trainingthr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0gen: generations to evolve anchors using genetic algorithmverbose: print all resultsReturn:k: kmeans evolved anchorsUsage:from utils.autoanchor import *; _ = kmean_anchors()"""from scipy.cluster.vq import kmeansnpr = np.randomthr = 1 / thrdef metric(k, wh):  # compute metricsr = wh[:, None] / k[None]x = torch.min(r, 1 / r).min(2)[0]  # ratio metric# x = wh_iou(wh, torch.tensor(k))  # iou metricreturn x, x.max(1)[0]  # x, best_xdef anchor_fitness(k):  # mutation fitness_, best = metric(torch.tensor(k, dtype=torch.float32), wh)return (best * (best > thr).float()).mean()  # fitnessdef print_results(k, verbose=True):k = k[np.argsort(k.prod(1))]  # sort small to largex, best = metric(k, wh0)bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n  # best possible recall, anch > thrs = (f"{PREFIX}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr\n"f"{PREFIX}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, "f"past_thr={x[x > thr].mean():.3f}-mean: ")for x in k:s += "%i,%i, " % (round(x[0]), round(x[1]))if verbose:LOGGER.info(s[:-2])return kif isinstance(dataset, str):  # *.yaml filewith open(dataset, errors="ignore") as f:data_dict = yaml.safe_load(f)  # model dictfrom utils.dataloaders import LoadImagesAndLabelsdataset = LoadImagesAndLabels(data_dict["train"], augment=True, rect=True)# Get label whshapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)])  # wh# Filteri = (wh0 < 3.0).any(1).sum()if i:LOGGER.info(f"{PREFIX}WARNING ⚠️ Extremely small objects found: {i} of {len(wh0)} labels are <3 pixels in size")wh = wh0[(wh0 >= 2.0).any(1)].astype(np.float32)  # filter > 2 pixels# wh = wh * (npr.rand(wh.shape[0], 1) * 0.9 + 0.1)  # multiply by random scale 0-1# Kmeans inittry:LOGGER.info(f"{PREFIX}Running kmeans for {n} anchors on {len(wh)} points...")assert n <= len(wh)  # apply overdetermined constraints = wh.std(0)  # sigmas for whiteningk = kmeans(wh / s, n, iter=30)[0] * s  # pointsassert n == len(k)  # kmeans may return fewer points than requested if wh is insufficient or too similarexcept Exception:LOGGER.warning(f"{PREFIX}WARNING ⚠️ switching strategies from kmeans to random init")k = np.sort(npr.rand(n * 2)).reshape(n, 2) * img_size  # random initwh, wh0 = (torch.tensor(x, dtype=torch.float32) for x in (wh, wh0))k = print_results(k, verbose=False)# Plot# k, d = [None] * 20, [None] * 20# for i in tqdm(range(1, 21)):#     k[i-1], d[i-1] = kmeans(wh / s, i)  # points, mean distance# fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)# ax = ax.ravel()# ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')# fig, ax = plt.subplots(1, 2, figsize=(14, 7))  # plot wh# ax[0].hist(wh[wh[:, 0]<100, 0],400)# ax[1].hist(wh[wh[:, 1]<100, 1],400)# fig.savefig('wh.png', dpi=200)# Evolvef, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1  # fitness, generations, mutation prob, sigmapbar = tqdm(range(gen), bar_format=TQDM_BAR_FORMAT)  # progress barfor _ in pbar:v = np.ones(sh)while (v == 1).all():  # mutate until a change occurs (prevent duplicates)v = ((npr.random(sh) < mp) * random.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)kg = (k.copy() * v).clip(min=2.0)fg = anchor_fitness(kg)if fg > f:f, k = fg, kg.copy()pbar.desc = f"{PREFIX}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}"if verbose:print_results(k, verbose)return print_results(k).astype(np.float32)
  • 核查的主要代码:
@TryExcept(f"{PREFIX}ERROR")
def check_anchors(dataset, model, thr=4.0, imgsz=640):"""Evaluates anchor fit to dataset and adjusts if necessary, supporting customizable threshold and image size."""m = model.module.model[-1] if hasattr(model, "module") else model.model[-1]  # Detect()shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1))  # augment scalewh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float()  # whdef metric(k):  # compute metricr = wh[:, None] / k[None]x = torch.min(r, 1 / r).min(2)[0]  # ratio metricbest = x.max(1)[0]  # best_xaat = (x > 1 / thr).float().sum(1).mean()  # anchors above thresholdbpr = (best > 1 / thr).float().mean()  # best possible recallreturn bpr, aatstride = m.stride.to(m.anchors.device).view(-1, 1, 1)  # model stridesanchors = m.anchors.clone() * stride  # current anchorsbpr, aat = metric(anchors.cpu().view(-1, 2))s = f"\n{PREFIX}{aat:.2f} anchors/target, {bpr:.3f} Best Possible Recall (BPR). "if bpr > 0.98:  # threshold to recomputeLOGGER.info(f"{s}Current anchors are a good fit to dataset ✅")else:LOGGER.info(f"{s}Anchors are a poor fit to dataset ⚠️, attempting to improve...")na = m.anchors.numel() // 2  # number of anchorsanchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)new_bpr = metric(anchors)[0]if new_bpr > bpr:  # replace anchorsanchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)m.anchors[:] = anchors.clone().view_as(m.anchors)check_anchor_order(m)  # must be in pixel-space (not grid-space)m.anchors /= strides = f"{PREFIX}Done ✅ (optional: update model *.yaml to use these anchors in the future)"else:s = f"{PREFIX}Done ⚠️ (original anchors better than new anchors, proceeding with original anchors)"LOGGER.info(s)

ps:
bpr(best possible recall)
aat(anchors above threshold)

其中 bpr 参数就是判断是否需要重新计算锚定框的依据(是否小于0.98)。

  • 重新计算符合此数据集标注框的锚定框,是利用 kmean聚类方法实现的,主要代码如下:
def kmean_anchors(dataset="./data/coco128.yaml", n=9, img_size=640, thr=4.0, gen=1000, verbose=True):"""Creates kmeans-evolved anchors from training dataset.Arguments:dataset: path to data.yaml, or a loaded datasetn: number of anchorsimg_size: image size used for trainingthr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0gen: generations to evolve anchors using genetic algorithmverbose: print all resultsReturn:k: kmeans evolved anchorsUsage:from utils.autoanchor import *; _ = kmean_anchors()"""from scipy.cluster.vq import kmeansnpr = np.randomthr = 1 / thrdef metric(k, wh):  # compute metricsr = wh[:, None] / k[None]x = torch.min(r, 1 / r).min(2)[0]  # ratio metric# x = wh_iou(wh, torch.tensor(k))  # iou metricreturn x, x.max(1)[0]  # x, best_xdef anchor_fitness(k):  # mutation fitness_, best = metric(torch.tensor(k, dtype=torch.float32), wh)return (best * (best > thr).float()).mean()  # fitnessdef print_results(k, verbose=True):k = k[np.argsort(k.prod(1))]  # sort small to largex, best = metric(k, wh0)bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n  # best possible recall, anch > thrs = (f"{PREFIX}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr\n"f"{PREFIX}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, "f"past_thr={x[x > thr].mean():.3f}-mean: ")for x in k:s += "%i,%i, " % (round(x[0]), round(x[1]))if verbose:LOGGER.info(s[:-2])return kif isinstance(dataset, str):  # *.yaml filewith open(dataset, errors="ignore") as f:data_dict = yaml.safe_load(f)  # model dictfrom utils.dataloaders import LoadImagesAndLabelsdataset = LoadImagesAndLabels(data_dict["train"], augment=True, rect=True)# Get label whshapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)])  # wh# Filteri = (wh0 < 3.0).any(1).sum()if i:LOGGER.info(f"{PREFIX}WARNING ⚠️ Extremely small objects found: {i} of {len(wh0)} labels are <3 pixels in size")wh = wh0[(wh0 >= 2.0).any(1)].astype(np.float32)  # filter > 2 pixels# wh = wh * (npr.rand(wh.shape[0], 1) * 0.9 + 0.1)  # multiply by random scale 0-1# Kmeans inittry:LOGGER.info(f"{PREFIX}Running kmeans for {n} anchors on {len(wh)} points...")assert n <= len(wh)  # apply overdetermined constraints = wh.std(0)  # sigmas for whiteningk = kmeans(wh / s, n, iter=30)[0] * s  # pointsassert n == len(k)  # kmeans may return fewer points than requested if wh is insufficient or too similarexcept Exception:LOGGER.warning(f"{PREFIX}WARNING ⚠️ switching strategies from kmeans to random init")k = np.sort(npr.rand(n * 2)).reshape(n, 2) * img_size  # random initwh, wh0 = (torch.tensor(x, dtype=torch.float32) for x in (wh, wh0))k = print_results(k, verbose=False)# Plot# k, d = [None] * 20, [None] * 20# for i in tqdm(range(1, 21)):#     k[i-1], d[i-1] = kmeans(wh / s, i)  # points, mean distance# fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)# ax = ax.ravel()# ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')# fig, ax = plt.subplots(1, 2, figsize=(14, 7))  # plot wh# ax[0].hist(wh[wh[:, 0]<100, 0],400)# ax[1].hist(wh[wh[:, 1]<100, 1],400)# fig.savefig('wh.png', dpi=200)# Evolvef, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1  # fitness, generations, mutation prob, sigmapbar = tqdm(range(gen), bar_format=TQDM_BAR_FORMAT)  # progress barfor _ in pbar:v = np.ones(sh)while (v == 1).all():  # mutate until a change occurs (prevent duplicates)v = ((npr.random(sh) < mp) * random.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)kg = (k.copy() * v).clip(min=2.0)fg = anchor_fitness(kg)if fg > f:f, k = fg, kg.copy()pbar.desc = f"{PREFIX}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}"if verbose:print_results(k, verbose)return print_results(k).astype(np.float32)

参数释意:

  • dataset:包含数据集文件路径等相关信息的 yaml 文件,或者数据集张量(yolov5 自动计算锚定框时就是用的这种方式,先把数据集标签信息读取再处理)。默认 coco128.yaml
  • n:锚定框的数量,即有几组。默认值是9
  • img_size:图像尺寸。计算数据集样本标签框的宽高比时,是需要缩放到 img_size 大小后再计算的。默认值是640
  • thr:数据集中标注框宽高比最大阈值,默认使用超参文件./data/hyps/hyp.scratch-  .yaml 中的 “anchor_t”参数值;默认值是4.0。自动计算时,会自动根据你所使用的数据集,来计算合适的阈值。
  • gen:kmean聚类算法迭代次数。默认值是1000
  • verbose:是否打印输出所有计算结果,默认值是true
  • 如果不想自动计算锚定框,可以在train.py中设置参数:
parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')

3、手动锚框计算

  • 1. 在./data文件夹下复制VOC.yaml文件,自己命名,如train_data.yaml文件,修改文件路径为绝对路径
train: # train images (relative to 'path')  16551 imagesF:/dataset/yolo/yolov5_up_sum/yolov5-master/datasets/train_data/images/trainval: # val images (relative to 'path')  4952 imagesF:/dataset/yolo/yolov5_up_sum/yolov5-master/datasets/train_data/images/val
test: # test images (optional)# Classes
names: ['Team1', 'Team2', 'Ball', 'Team3']
  • 数据集中需含有.cache文件

如果数据集中不存在.cache文件,查找Yolov5训练自己数据集的帖子,按照流程运行train.py文件,成功的话文件夹下会自动生成.cache文件

.cache文件:原始数据里没有该文件,yolov5自动生成的缓存文件,再下次读数据时,直接读取缓存文件,速度更快

  • 2. 在Yolov5目录下新建一个.py文件,调用kmeans算法计算anchor:
import utils.autoanchor as autoACif __name__ == '__main__':config = "./data/train_data.yaml"# 对数据集重新计算 anchorsnew_anchors = autoAC.kmean_anchors(config, 9, 640, 5.0, 1000, True)print(new_anchors)

运行结果展示:

albumentations: Blur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8, 8))
Scanning F:\dataset\yolo\yolov5_up_sum\yolov5-master\datasets\train_data\labels\train... 107 images, 0 backgrounds, 0 corrupt: 100%|██████████| 107/107 [00:15<00:00,  6.94it/s]
WARNING  Cache directory F:\dataset\yolo\yolov5_up_sum\yolov5-master\datasets\train_data\labels is not writeable: [WinError 183] : 'F:\\dataset\\yolo\\yolov5_up_sum\\yolov5-master\\datasets\\train_data\\labels\\train.cache.npy' -> 'F:\\dataset\\yolo\\yolov5_up_sum\\yolov5-master\\datasets\\train_data\\labels\\train.cache'
AutoAnchor: Running kmeans for 9 anchors on 855 points...0%|          | 0/1000 [00:00<?, ?it/s]AutoAnchor: thr=0.20: 1.0000 best possible recall, 6.79 anchors past thr
AutoAnchor: n=9, img_size=640, metric_all=0.399/0.789-mean/best, past_thr=0.488-mean: 15,20, 25,23, 20,46, 35,39, 34,71, 62,60, 76,129, 100,213, 162,232
AutoAnchor: thr=0.20: 1.0000 best possible recall, 6.83 anchors past thr
AutoAnchor: n=9, img_size=640, metric_all=0.400/0.789-mean/best, past_thr=0.486-mean: 15,20, 25,23, 20,47, 36,40, 34,67, 63,62, 74,126, 102,216, 159,232
AutoAnchor: thr=0.20: 1.0000 best possible recall, 6.81 anchors past thr
AutoAnchor: n=9, img_size=640, metric_all=0.399/0.790-mean/best, past_thr=0.485-mean: 15,19, 25,23, 20,47, 36,39, 34,69, 63,62, 73,128, 97,212, 161,230
AutoAnchor: thr=0.20: 1.0000 best possible recall, 6.82 anchors past thr
AutoAnchor: n=9, img_size=640, metric_all=0.398/0.790-mean/best, past_thr=0.483-mean: 15,19, 25,23, 19,46, 36,39, 32,67, 64,63, 74,131, 101,205, 161,220
AutoAnchor: thr=0.20: 1.0000 best possible recall, 6.84 anchors past thr
AutoAnchor: n=9, img_size=640, metric_all=0.398/0.790-mean/best, past_thr=0.483-mean: 15,19, 25,23, 20,46, 35,39, 33,67, 64,63, 74,131, 101,205, 160,219
AutoAnchor: thr=0.20: 1.0000 best possible recall, 6.84 anchors past thr
AutoAnchor: n=9, img_size=640, metric_all=0.399/0.791-mean/best, past_thr=0.484-mean: 15,19, 25,23, 19,46, 35,39, 32,66, 64,65, 74,131, 100,205, 160,222
AutoAnchor: thr=0.20: 1.0000 best possible recall, 6.84 anchors past thr
AutoAnchor: n=9, img_size=640, metric_all=0.399/0.791-mean/best, past_thr=0.484-mean: 15,19, 25,23, 20,46, 35,39, 32,66, 64,64, 74,131, 100,205, 160,221
AutoAnchor: thr=0.20: 1.0000 best possible recall, 6.88 anchors past thr
AutoAnchor: n=9, img_size=640, metric_all=0.406/0.792-mean/best, past_thr=0.492-mean: 14,20, 25,24, 19,45, 34,38, 33,59, 60,64, 73,128, 97,209, 147,221
AutoAnchor: thr=0.20: 1.0000 best possible recall, 6.88 anchors past thr
AutoAnchor: n=9, img_size=640, metric_all=0.408/0.794-mean/best, past_thr=0.494-mean: 14,20, 25,22, 20,45, 30,36, 33,58, 60,59, 73,123, 90,203, 153,229
AutoAnchor: thr=0.20: 1.0000 best possible recall, 6.88 anchors past thr
AutoAnchor: n=9, img_size=640, metric_all=0.408/0.794-mean/best, past_thr=0.494-mean: 14,20, 25,22, 20,45, 30,36, 33,58, 60,59, 74,124, 89,204, 154,228
AutoAnchor: thr=0.20: 1.0000 best possible recall, 6.89 anchors past thr
AutoAnchor: n=9, img_size=640, metric_all=0.408/0.795-mean/best, past_thr=0.493-mean: 14,19, 25,22, 20,44, 31,36, 34,57, 60,59, 75,121, 89,211, 154,225
AutoAnchor: thr=0.20: 1.0000 best possible recall, 6.89 anchors past thr
AutoAnchor: n=9, img_size=640, metric_all=0.407/0.795-mean/best, past_thr=0.493-mean: 14,19, 25,22, 20,44, 31,36, 34,57, 59,59, 75,121, 89,212, 154,225
AutoAnchor: thr=0.20: 1.0000 best possible recall, 6.88 anchors past thr
AutoAnchor: n=9, img_size=640, metric_all=0.407/0.795-mean/best, past_thr=0.493-mean: 14,19, 25,22, 20,44, 31,36, 34,57, 59,59, 75,122, 89,213, 155,224
AutoAnchor: thr=0.20: 1.0000 best possible recall, 6.84 anchors past thr
AutoAnchor: n=9, img_size=640, metric_all=0.403/0.795-mean/best, past_thr=0.489-mean: 14,19, 24,21, 19,44, 31,37, 35,57, 60,49, 76,122, 93,226, 146,224
AutoAnchor: thr=0.20: 1.0000 best possible recall, 6.82 anchors past thr
AutoAnchor: n=9, img_size=640, metric_all=0.404/0.795-mean/best, past_thr=0.491-mean: 14,19, 24,21, 19,44, 31,37, 35,58, 60,50, 76,121, 94,227, 148,224
AutoAnchor: thr=0.20: 1.0000 best possible recall, 6.82 anchors past thr
AutoAnchor: n=9, img_size=640, metric_all=0.404/0.796-mean/best, past_thr=0.491-mean: 14,19, 24,21, 19,44, 31,37, 35,58, 59,50, 76,121, 94,228, 149,225
AutoAnchor: thr=0.20: 1.0000 best possible recall, 6.85 anchors past thr
AutoAnchor: n=9, img_size=640, metric_all=0.404/0.796-mean/best, past_thr=0.491-mean: 14,19, 25,21, 19,44, 30,36, 33,58, 60,52, 75,116, 92,228, 149,227
AutoAnchor: Evolving anchors with Genetic Algorithm: fitness = 0.7959:  16%|█▌        | 156/1000 [00:00<00:00, 1559.97it/s]AutoAnchor: thr=0.20: 1.0000 best possible recall, 6.84 anchors past thr
AutoAnchor: n=9, img_size=640, metric_all=0.404/0.796-mean/best, past_thr=0.492-mean: 14,19, 25,21, 19,44, 30,36, 33,58, 60,52, 75,117, 92,228, 148,227
AutoAnchor: thr=0.20: 1.0000 best possible recall, 6.85 anchors past thr
AutoAnchor: n=9, img_size=640, metric_all=0.404/0.796-mean/best, past_thr=0.490-mean: 14,18, 24,20, 18,44, 29,36, 33,58, 59,53, 73,116, 91,228, 149,225
AutoAnchor: thr=0.20: 1.0000 best possible recall, 6.88 anchors past thr
AutoAnchor: n=9, img_size=640, metric_all=0.405/0.796-mean/best, past_thr=0.490-mean: 14,18, 23,20, 19,44, 29,36, 33,58, 59,53, 74,118, 92,219, 150,226
AutoAnchor: thr=0.20: 1.0000 best possible recall, 6.86 anchors past thr
AutoAnchor: n=9, img_size=640, metric_all=0.405/0.796-mean/best, past_thr=0.491-mean: 14,18, 23,20, 19,43, 30,36, 32,58, 59,52, 73,119, 92,220, 148,230
AutoAnchor: thr=0.20: 1.0000 best possible recall, 6.86 anchors past thr
AutoAnchor: n=9, img_size=640, metric_all=0.405/0.796-mean/best, past_thr=0.491-mean: 14,18, 23,20, 19,43, 30,36, 33,58, 59,53, 73,122, 92,220, 148,228
AutoAnchor: thr=0.20: 1.0000 best possible recall, 6.87 anchors past thr
AutoAnchor: n=9, img_size=640, metric_all=0.405/0.796-mean/best, past_thr=0.491-mean: 14,18, 23,20, 19,43, 30,37, 33,58, 59,52, 72,122, 93,220, 147,229
AutoAnchor: thr=0.20: 1.0000 best possible recall, 6.87 anchors past thr
AutoAnchor: n=9, img_size=640, metric_all=0.405/0.796-mean/best, past_thr=0.491-mean: 14,18, 23,20, 19,43, 30,37, 33,58, 59,52, 72,122, 93,220, 147,229
AutoAnchor: thr=0.20: 1.0000 best possible recall, 6.86 anchors past thr
AutoAnchor: n=9, img_size=640, metric_all=0.405/0.796-mean/best, past_thr=0.491-mean: 14,18, 23,20, 19,43, 30,36, 33,58, 59,52, 73,122, 93,220, 146,230
AutoAnchor: thr=0.20: 1.0000 best possible recall, 6.86 anchors past thr
AutoAnchor: n=9, img_size=640, metric_all=0.405/0.796-mean/best, past_thr=0.491-mean: 14,18, 24,20, 19,43, 30,36, 33,58, 58,53, 73,122, 93,222, 147,227
AutoAnchor: Evolving anchors with Genetic Algorithm: fitness = 0.7964:  32%|███▏      | 321/1000 [00:00<00:00, 1600.54it/s]AutoAnchor: thr=0.20: 1.0000 best possible recall, 6.86 anchors past thr
AutoAnchor: n=9, img_size=640, metric_all=0.405/0.796-mean/best, past_thr=0.491-mean: 14,18, 24,20, 19,43, 30,37, 33,58, 58,53, 73,122, 93,222, 147,227
AutoAnchor: thr=0.20: 1.0000 best possible recall, 6.86 anchors past thr
AutoAnchor: n=9, img_size=640, metric_all=0.405/0.796-mean/best, past_thr=0.491-mean: 14,18, 24,20, 19,43, 30,36, 33,58, 58,53, 73,122, 93,221, 147,227
AutoAnchor: thr=0.20: 1.0000 best possible recall, 6.86 anchors past thr
AutoAnchor: n=9, img_size=640, metric_all=0.405/0.796-mean/best, past_thr=0.491-mean: 14,18, 24,20, 19,43, 30,36, 33,58, 58,53, 73,122, 93,222, 147,227
AutoAnchor: thr=0.20: 1.0000 best possible recall, 6.86 anchors past thr
AutoAnchor: n=9, img_size=640, metric_all=0.405/0.796-mean/best, past_thr=0.491-mean: 14,18, 24,20, 19,43, 30,36, 33,58, 58,53, 73,123, 92,222, 147,227
AutoAnchor: thr=0.20: 1.0000 best possible recall, 6.87 anchors past thr
AutoAnchor: n=9, img_size=640, metric_all=0.406/0.797-mean/best, past_thr=0.492-mean: 14,18, 24,20, 19,42, 30,36, 33,57, 58,54, 72,122, 93,218, 147,230
AutoAnchor: thr=0.20: 1.0000 best possible recall, 6.87 anchors past thr
AutoAnchor: n=9, img_size=640, metric_all=0.406/0.797-mean/best, past_thr=0.493-mean: 14,18, 24,20, 19,42, 30,35, 33,57, 57,54, 72,122, 93,218, 146,236
AutoAnchor: thr=0.20: 1.0000 best possible recall, 6.86 anchors past thr
AutoAnchor: n=9, img_size=640, metric_all=0.407/0.797-mean/best, past_thr=0.493-mean: 14,18, 24,20, 19,43, 30,36, 32,57, 57,54, 72,122, 93,218, 143,234
AutoAnchor: thr=0.20: 1.0000 best possible recall, 6.85 anchors past thr
AutoAnchor: n=9, img_size=640, metric_all=0.406/0.797-mean/best, past_thr=0.493-mean: 14,18, 24,21, 19,42, 30,36, 32,57, 58,55, 72,123, 93,219, 143,234
AutoAnchor: Evolving anchors with Genetic Algorithm: fitness = 0.7968:  48%|████▊     | 482/1000 [00:00<00:00, 1548.48it/s]AutoAnchor: thr=0.20: 1.0000 best possible recall, 6.85 anchors past thr
AutoAnchor: n=9, img_size=640, metric_all=0.406/0.797-mean/best, past_thr=0.493-mean: 14,18, 24,21, 19,42, 30,36, 32,58, 58,55, 72,123, 92,220, 143,236
AutoAnchor: thr=0.20: 1.0000 best possible recall, 6.87 anchors past thr
AutoAnchor: n=9, img_size=640, metric_all=0.406/0.797-mean/best, past_thr=0.492-mean: 14,19, 24,21, 19,42, 31,36, 32,58, 59,55, 72,122, 93,218, 143,236
AutoAnchor: thr=0.20: 1.0000 best possible recall, 6.87 anchors past thr
AutoAnchor: n=9, img_size=640, metric_all=0.406/0.797-mean/best, past_thr=0.492-mean: 14,19, 24,21, 19,42, 31,36, 32,58, 59,55, 72,122, 93,218, 143,236
AutoAnchor: thr=0.20: 1.0000 best possible recall, 6.87 anchors past thr
AutoAnchor: n=9, img_size=640, metric_all=0.406/0.797-mean/best, past_thr=0.492-mean: 14,18, 24,21, 19,42, 31,37, 32,58, 59,56, 73,123, 93,218, 143,236
AutoAnchor: thr=0.20: 1.0000 best possible recall, 6.86 anchors past thr
AutoAnchor: n=9, img_size=640, metric_all=0.406/0.797-mean/best, past_thr=0.492-mean: 14,18, 24,21, 19,42, 31,37, 32,58, 59,56, 72,123, 92,218, 143,235
AutoAnchor: thr=0.20: 1.0000 best possible recall, 6.84 anchors past thr
AutoAnchor: n=9, img_size=640, metric_all=0.405/0.797-mean/best, past_thr=0.493-mean: 14,18, 24,21, 19,42, 31,36, 32,59, 57,57, 72,126, 92,217, 142,240
AutoAnchor: thr=0.20: 1.0000 best possible recall, 6.84 anchors past thr
AutoAnchor: n=9, img_size=640, metric_all=0.405/0.797-mean/best, past_thr=0.493-mean: 14,18, 24,21, 19,42, 31,36, 32,59, 58,57, 72,126, 91,217, 142,240
AutoAnchor: Evolving anchors with Genetic Algorithm: fitness = 0.7971:  65%|██████▍   | 647/1000 [00:00<00:00, 1563.54it/s]AutoAnchor: thr=0.20: 1.0000 best possible recall, 6.85 anchors past thr
AutoAnchor: n=9, img_size=640, metric_all=0.405/0.797-mean/best, past_thr=0.492-mean: 14,18, 24,21, 19,42, 31,36, 32,59, 57,57, 73,126, 92,216, 142,239
AutoAnchor: Evolving anchors with Genetic Algorithm: fitness = 0.7971:  82%|████████▏ | 816/1000 [00:00<00:00, 1607.99it/s]AutoAnchor: thr=0.20: 1.0000 best possible recall, 6.85 anchors past thr
AutoAnchor: n=9, img_size=640, metric_all=0.405/0.797-mean/best, past_thr=0.492-mean: 14,18, 24,20, 19,42, 31,36, 32,58, 57,57, 72,126, 92,215, 140,237
AutoAnchor: thr=0.20: 1.0000 best possible recall, 6.86 anchors past thr
AutoAnchor: n=9, img_size=640, metric_all=0.406/0.797-mean/best, past_thr=0.492-mean: 14,18, 24,20, 19,42, 31,36, 32,58, 57,57, 71,126, 92,214, 140,236
AutoAnchor: thr=0.20: 1.0000 best possible recall, 6.85 anchors past thr
AutoAnchor: n=9, img_size=640, metric_all=0.405/0.797-mean/best, past_thr=0.492-mean: 14,18, 24,20, 19,42, 31,36, 32,58, 57,57, 71,126, 92,214, 140,236
[[     14.077      18.166][     23.833       20.45][      18.59      42.161][     30.656      36.243][     32.122      58.356][     57.303      56.757][     71.018      126.44][     91.503      214.03][     140.23      235.73]]
AutoAnchor: Evolving anchors with Genetic Algorithm: fitness = 0.7972: 100%|██████████| 1000/1000 [00:00<00:00, 1630.48it/s]
AutoAnchor: thr=0.20: 1.0000 best possible recall, 6.85 anchors past thr
AutoAnchor: n=9, img_size=640, metric_all=0.405/0.797-mean/best, past_thr=0.492-mean: 14,18, 24,20, 19,42, 31,36, 32,58, 57,57, 71,126, 92,214, 140,236Process finished with exit code 0

输出的9个坐标即为锚框中心坐标,复制yolov5s.yaml文件,自己命名,如yolov5s_train.yaml,将计算所得值按顺序修改至模型配置文件./model/yolov5s_train.yaml中,重新训练即可:

# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license# Parameters
nc: 4 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
anchors:- [14.077, 18.166, 23.833, 20.45, 18.59, 42.161] # P3/8- [30.656, 36.243, 32.122, 58.356, 57.303, 56.757] # P4/16- [71.018, 126.44, 91.503, 214.03, 140.23, 235.73] # P5/32

4. 检测模块

(没看太懂,后面再查些资料)

anchor在模型中的应用涉及到了yolo系列目标框回归的过程。yolov5中的detect模块沿用了v3检测方式。

  • 1. 检测到的不是框而是偏移量: tx,ty指的是针对所在grid的左上角坐标的偏移量, tw,th指的是相对于anchor的宽高的偏移量,通过如下图的计算方式,得到bx,by,bw,bh就是最终的检测结果。

  • 2. 前面经过backbone,neck,head是panet的三个分支,可见特征图size不同,每个特征图分了13个网格,同一尺度的特征图对应了3个anchor,检测了[c,x,y,w,h]和num_class个的one-hot类别标签。3个尺度的特征图,总共就有9个anchor。

参考:

Yolov5的anchors设置详解

Yolov5的anchor详解

YOLOv5的anchor设定

(20)目标检测算法之YOLOv5计算预选框、详解anchor计算

这篇关于【Yolov系列】Yolov5学习(一)补充1.1:自适应锚框计算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/918262

相关文章

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

usaco 1.1 Broken Necklace(DP)

直接上代码 接触的第一道dp ps.大概的思路就是 先从左往右用一个数组在每个点记下蓝或黑的个数 再从右到左算一遍 最后取出最大的即可 核心语句在于: 如果 str[i] = 'r'  ,   rl[i]=rl[i-1]+1, bl[i]=0 如果 str[i] = 'b' ,  bl[i]=bl[i-1]+1, rl[i]=0 如果 str[i] = 'w',  bl[i]=b

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss