操作系统课程设计:银行家算法与随机分配算法(linux篇)

2024-04-19 15:38

本文主要是介绍操作系统课程设计:银行家算法与随机分配算法(linux篇),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

#include <stdio.h>
typedef struct
{
int	A;
int	B;
int	C;
}RES;
typedef int bool;
#define false 0
#define true  1
//系统中所有进程数量
#define PNUMBER	3
//最大需求矩阵
RES Max[PNUMBER];
//已分配资源数矩阵
RES Allocation[PNUMBER];
//需求矩阵
RES Need[PNUMBER];
//可用资源向量
RES Available={0,0,0};
//安全序列
int safe[PNUMBER];
void setConfig()
{
int i=0,j=0;
printf("================开始手动配置资源==================\n");
//可分配资源
scanf("%d%d%d",&Available.A,&Available.B,&Available.C);
//最大需求矩阵MAX
for (i=0;i<PNUMBER;i++)
{
scanf("%d%d%d",&Max[i].A,&Max[i].B,&Max[i].C);
}
//已分配矩阵Alloc
for (i=0;i<PNUMBER;i++)
{
scanf("%d%d%d",&Allocation[i].A,&Allocation[i].B,&Allocation[i].C);
}
//需求矩阵
for (i=0;i<PNUMBER;i++)
{
scanf("%d%d%d",&Need[i].A,&Need[i].B,&Need[i].C);
}
printf("================结束配置资源==================\n");
}
void loadConfig()
{
FILE *fp1;
if ((fp1=fopen("config.txt","r"))==NULL)
{
printf("没有发现配置文件,请手动输入!!!\n");
setConfig();
}
else{  
int i=0;
printf("发现配置文件,开始导入..");
//可分配资源
fscanf(fp1,"%d%d%d",&Available.A,&Available.B,&Available.C);
//最大需求矩阵MAX
for (i=0;i<PNUMBER;i++)
{
fscanf(fp1,"%d%d%d",&Max[i].A,&Max[i].B,&Max[i].C);
}
//已分配矩阵Alloc
for (i=0;i<PNUMBER;i++)
{
fscanf(fp1,"%d%d%d",&Allocation[i].A,&Allocation[i].B,&Allocation[i].C);
}
//需求矩阵
for (i=0;i<PNUMBER;i++)
{
fscanf(fp1,"%d%d%d",&Need[i].A,&Need[i].B,&Need[i].C);
}		
printf("信息导入完成.....\n");
}
}
//试探分配
void ProbeAlloc(int process,RES *res)
{
Available.A -= res->A;
Available.B -= res->B;
Available.C -= res->C;
Allocation[process].A += res->A;
Allocation[process].B += res->B;
Allocation[process].C += res->C;
Need[process].A -= res->A;
Need[process].B -= res->B;
Need[process].C -= res->C;
}
//若试探分配后进入不安全状态,将分配回滚
void RollBack(int process,RES *res)
{
Available.A += res->A;
Available.B += res->B;
Available.C += res->C;
Allocation[process].A -= res->A;
Allocation[process].B -= res->B;
Allocation[process].C -= res->C;
Need[process].A += res->A;
Need[process].B += res->B;
Need[process].C += res->C;
}
//安全性检查
bool SafeCheck()
{
RES	Work = Available;
bool		Finish[PNUMBER] = {false,false,false};
int		i;
int		j = 0;
for (i = 0; i < PNUMBER; i++)
{
//是否已检查过
if(Finish[i] == false)
{
//是否有足够的资源分配给该进程
if(Need[i].A <= Work.A && Need[i].B <= Work.B && Need[i].C <= Work.C)
{
//有则使其执行完成,并将已分配给该进程的资源全部回收
Work.A += Allocation[i].A;
Work.B += Allocation[i].B;
Work.C += Allocation[i].C;
Finish[i] = true;
safe[j++] = i;
i = -1;				//重新进行遍历
}
}
}
//如果所有进程的Finish向量都为true则处于安全状态,否则为不安全状态
for (i = 0; i < PNUMBER; i++)
{
if (Finish[i] == false)
{
return false;
}
}
return true;
}
//资源分配请求
bool request(int process,RES *res)
{
//request向量需小于Need矩阵中对应的向量
if(res->A <= Need[process].A && res->B <= Need[process].B && res->C <= Need[process].C)
{
//request向量需小于Available向量
if(res->A <= Available.A && res->B <= Available.B && res->C <= Available.C)
{
//试探分配
ProbeAlloc(process,res);
//如果安全检查成立,则请求成功,否则将分配回滚并返回失败
if(SafeCheck())
{
return true;
}
else
{
printf("安全性检查失败。原因:系统将进入不安全状态,有可能引起死锁。\n");
printf("正在回滚...\n");
RollBack(process,res);
}
}
else
{
printf("安全性检查失败。原因:请求大于可利用资源。\n");
}
}
else
{
printf("安全性检查失败。原因:请求大于需求。\n");
}
return false;
}
//输出资源分配表
void PrintTable()
{
printf("===================================资源分配表==================================\n");
printf("Process		Max          Allocation          Need          Available\n");
printf("	   A    B    C      A    B     C      A     B     C     A    B   C\n");
printf("  P0      %2d   %2d   %2d     %2d   %2d    %2d     %2d    %2d    %2d    %2d   %2d  %2d\n",Max[0].A,Max[0].B,Max[0].C,Allocation[0].A,Allocation[0].B,Allocation[0].C,Need[0].A,Need[0].B,Need[0].C,Available.A,Available.B,Available.C);
printf("  P1      %2d   %2d   %2d     %2d   %2d    %2d     %2d    %2d    %2d\n",Max[1].A,Max[1].B,Max[1].C,Allocation[1].A,Allocation[1].B,Allocation[1].C,Need[1].A,Need[1].B,Need[1].C);
printf("  P2      %2d   %2d   %2d     %2d   %2d    %2d     %2d    %2d    %2d\n",Max[2].A,Max[2].B,Max[2].C,Allocation[2].A,Allocation[2].B,Allocation[2].C,Need[2].A,Need[2].B,Need[2].C);
printf("===============================================================================\n");
}
//银行家算法分配
void banker()
{
int	ch;
//判断输入的是否是安全状态
PrintTable();
printf("先检查初始状态是否安全。\n");
if (SafeCheck())
{
printf("系统处于安全状态。\n");
printf("安全序列是{P%d,P%d,P%d}。\n",safe[0],safe[1],safe[2]);
}
else
{
printf("系统处于不安全状态。程序将退出...\n");
printf("执行完毕。\n");
getchar();
return ;
}
//开始分配
do 
{
int		process;
RES	res;
printf("请依次输入请求分配的进程和对三类资源的请求数量:");
scanf("%d%d%d%d",&process,&res.A,&res.B,&res.C);
if(process<3 && process>=0){
if (request(process,&res))
{
printf("分配成功。\n");
PrintTable();
printf("安全序列是{P%d,P%d,P%d}。\n",safe[0],safe[1],safe[2]);
}
else
{
printf("分配失败。\n");
}
printf("是否继续分配?(Y/N):");
getchar();
ch = getchar();
}else
{
printf("输入的进程号0~2\n");
ch = 'y';
}
} while (ch == 'Y' || ch == 'y');
printf("执行完毕。\n");
}
//随机分配算法执行
bool RandRequest(int process,RES *res)
{
//request向量需小于Available向量
if(res->A <= Available.A && res->B <= Available.B && res->C <= Available.C)
{
//试探分配
ProbeAlloc(process,res);
//判断进程是否执行完,执行完释放资源
if(Max[process].A <= Allocation[process].A && Max[process].B <= Allocation[process].B && Max[process].C <= Allocation[process].C)
{
printf("\nP%d 执行完毕,释放所分配的资源...\n",process);
//有则使其执行完成,并将已分配给该进程的资源全部回收
Available.A += Allocation[process].A;
Available.B += Allocation[process].B;
Available.C += Allocation[process].C;
Allocation[process].A = 0;
Allocation[process].B = 0;
Allocation[process].C = 0;
Need[process].A = Max[process].A;
Need[process].B = Max[process].B;
Need[process].C = Max[process].C;
}
return true;
}
else
{
printf("分配失败。原因:请求大于可利用资源。\n");
}
return false;
}
//随机分配
void randPatch()
{
int	ch;
//判断输入的是否是安全状态
PrintTable();
printf("先检查初始状态是否安全。\n");
if (SafeCheck())
{
printf("系统处于安全状态。\n");
printf("安全序列是{P%d,P%d,P%d}。\n",safe[0],safe[1],safe[2]);
}
else
{
printf("系统处于不安全状态。程序将退出...\n");
printf("执行完毕。\n");
getchar();
return ;
}
//开始分配
do 
{
int		process;
RES	res;
printf("请依次输入请求分配的进程和对三类资源的请求数量:");
scanf("%d%d%d%d",&process,&res.A,&res.B,&res.C);
if (RandRequest(process,&res))
{
printf("分配成功。\n");
PrintTable();
if(!SafeCheck())
{
printf("系统发生死锁。");
getchar();
getchar();	
break;
}
}
else
{
printf("分配失败。\n");
}
printf("是否继续分配?(Y/N):");
getchar();
ch = getchar();
} while (ch == 'Y' || ch == 'y');
printf("执行完毕。\n");
}
int main()
{
int x;
while(1)
{
system("clear");
printf("===============================================================================\n");
printf("\t\t\t共享资源分配与银行家算法\n");
printf("===============================================================================\n");
printf("\t\t\t 按1.导入配置信息\n");
printf("\t\t\t 按2.银行家算法\n");
printf("\t\t\t 按3.随机分配算法\n");
printf("\t\t\t 按0.退出系统\n");
printf("===============================================================================\n");
printf("您输入的是:");
scanf("%d",&x);
fflush(stdin);
system("clear");
printf("===============================================================================\n");
printf("\t\t\t共享资源分配与银行家算法");
if (x == 2)
{
printf("\t---银行家算法\n");
}else if(x==3)
{
printf("\t---随机分配算法\n");
}
printf("===============================================================================\n");
switch(x)
{
case 1: 
{
//加载配置文件
loadConfig();
//打印资源分配表
PrintTable();
getchar();
getchar();
};break;
case 2: banker();break;
case 3: randPatch(); break;
case 0: return 0;break;
default:printf("请输入0~1之间的数字\n"); 
}
}
return 0;
}

这篇关于操作系统课程设计:银行家算法与随机分配算法(linux篇)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/917960

相关文章

Linux卸载自带jdk并安装新jdk版本的图文教程

《Linux卸载自带jdk并安装新jdk版本的图文教程》在Linux系统中,有时需要卸载预装的OpenJDK并安装特定版本的JDK,例如JDK1.8,所以本文给大家详细介绍了Linux卸载自带jdk并... 目录Ⅰ、卸载自带jdkⅡ、安装新版jdkⅠ、卸载自带jdk1、输入命令查看旧jdkrpm -qa

Linux samba共享慢的原因及解决方案

《Linuxsamba共享慢的原因及解决方案》:本文主要介绍Linuxsamba共享慢的原因及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux samba共享慢原因及解决问题表现原因解决办法总结Linandroidux samba共享慢原因及解决

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

新特性抢先看! Ubuntu 25.04 Beta 发布:Linux 6.14 内核

《新特性抢先看!Ubuntu25.04Beta发布:Linux6.14内核》Canonical公司近日发布了Ubuntu25.04Beta版,这一版本被赋予了一个活泼的代号——“Plu... Canonical 昨日(3 月 27 日)放出了 Beta 版 Ubuntu 25.04 系统镜像,代号“Pluc

Linux安装MySQL的教程

《Linux安装MySQL的教程》:本文主要介绍Linux安装MySQL的教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux安装mysql1.Mysql官网2.我的存放路径3.解压mysql文件到当前目录4.重命名一下5.创建mysql用户组和用户并修

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

Linux上设置Ollama服务配置(常用环境变量)

《Linux上设置Ollama服务配置(常用环境变量)》本文主要介绍了Linux上设置Ollama服务配置(常用环境变量),Ollama提供了多种环境变量供配置,如调试模式、模型目录等,下面就来介绍一... 目录在 linux 上设置环境变量配置 OllamPOgxSRJfa手动安装安装特定版本查看日志在

Linux系统之主机网络配置方式

《Linux系统之主机网络配置方式》:本文主要介绍Linux系统之主机网络配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、查看主机的网络参数1、查看主机名2、查看IP地址3、查看网关4、查看DNS二、配置网卡1、修改网卡配置文件2、nmcli工具【通用

Linux系统之dns域名解析全过程

《Linux系统之dns域名解析全过程》:本文主要介绍Linux系统之dns域名解析全过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、dns域名解析介绍1、DNS核心概念1.1 区域 zone1.2 记录 record二、DNS服务的配置1、正向解析的配置