操作系统课程设计:银行家算法与随机分配算法(linux篇)

2024-04-19 15:38

本文主要是介绍操作系统课程设计:银行家算法与随机分配算法(linux篇),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

#include <stdio.h>
typedef struct
{
int	A;
int	B;
int	C;
}RES;
typedef int bool;
#define false 0
#define true  1
//系统中所有进程数量
#define PNUMBER	3
//最大需求矩阵
RES Max[PNUMBER];
//已分配资源数矩阵
RES Allocation[PNUMBER];
//需求矩阵
RES Need[PNUMBER];
//可用资源向量
RES Available={0,0,0};
//安全序列
int safe[PNUMBER];
void setConfig()
{
int i=0,j=0;
printf("================开始手动配置资源==================\n");
//可分配资源
scanf("%d%d%d",&Available.A,&Available.B,&Available.C);
//最大需求矩阵MAX
for (i=0;i<PNUMBER;i++)
{
scanf("%d%d%d",&Max[i].A,&Max[i].B,&Max[i].C);
}
//已分配矩阵Alloc
for (i=0;i<PNUMBER;i++)
{
scanf("%d%d%d",&Allocation[i].A,&Allocation[i].B,&Allocation[i].C);
}
//需求矩阵
for (i=0;i<PNUMBER;i++)
{
scanf("%d%d%d",&Need[i].A,&Need[i].B,&Need[i].C);
}
printf("================结束配置资源==================\n");
}
void loadConfig()
{
FILE *fp1;
if ((fp1=fopen("config.txt","r"))==NULL)
{
printf("没有发现配置文件,请手动输入!!!\n");
setConfig();
}
else{  
int i=0;
printf("发现配置文件,开始导入..");
//可分配资源
fscanf(fp1,"%d%d%d",&Available.A,&Available.B,&Available.C);
//最大需求矩阵MAX
for (i=0;i<PNUMBER;i++)
{
fscanf(fp1,"%d%d%d",&Max[i].A,&Max[i].B,&Max[i].C);
}
//已分配矩阵Alloc
for (i=0;i<PNUMBER;i++)
{
fscanf(fp1,"%d%d%d",&Allocation[i].A,&Allocation[i].B,&Allocation[i].C);
}
//需求矩阵
for (i=0;i<PNUMBER;i++)
{
fscanf(fp1,"%d%d%d",&Need[i].A,&Need[i].B,&Need[i].C);
}		
printf("信息导入完成.....\n");
}
}
//试探分配
void ProbeAlloc(int process,RES *res)
{
Available.A -= res->A;
Available.B -= res->B;
Available.C -= res->C;
Allocation[process].A += res->A;
Allocation[process].B += res->B;
Allocation[process].C += res->C;
Need[process].A -= res->A;
Need[process].B -= res->B;
Need[process].C -= res->C;
}
//若试探分配后进入不安全状态,将分配回滚
void RollBack(int process,RES *res)
{
Available.A += res->A;
Available.B += res->B;
Available.C += res->C;
Allocation[process].A -= res->A;
Allocation[process].B -= res->B;
Allocation[process].C -= res->C;
Need[process].A += res->A;
Need[process].B += res->B;
Need[process].C += res->C;
}
//安全性检查
bool SafeCheck()
{
RES	Work = Available;
bool		Finish[PNUMBER] = {false,false,false};
int		i;
int		j = 0;
for (i = 0; i < PNUMBER; i++)
{
//是否已检查过
if(Finish[i] == false)
{
//是否有足够的资源分配给该进程
if(Need[i].A <= Work.A && Need[i].B <= Work.B && Need[i].C <= Work.C)
{
//有则使其执行完成,并将已分配给该进程的资源全部回收
Work.A += Allocation[i].A;
Work.B += Allocation[i].B;
Work.C += Allocation[i].C;
Finish[i] = true;
safe[j++] = i;
i = -1;				//重新进行遍历
}
}
}
//如果所有进程的Finish向量都为true则处于安全状态,否则为不安全状态
for (i = 0; i < PNUMBER; i++)
{
if (Finish[i] == false)
{
return false;
}
}
return true;
}
//资源分配请求
bool request(int process,RES *res)
{
//request向量需小于Need矩阵中对应的向量
if(res->A <= Need[process].A && res->B <= Need[process].B && res->C <= Need[process].C)
{
//request向量需小于Available向量
if(res->A <= Available.A && res->B <= Available.B && res->C <= Available.C)
{
//试探分配
ProbeAlloc(process,res);
//如果安全检查成立,则请求成功,否则将分配回滚并返回失败
if(SafeCheck())
{
return true;
}
else
{
printf("安全性检查失败。原因:系统将进入不安全状态,有可能引起死锁。\n");
printf("正在回滚...\n");
RollBack(process,res);
}
}
else
{
printf("安全性检查失败。原因:请求大于可利用资源。\n");
}
}
else
{
printf("安全性检查失败。原因:请求大于需求。\n");
}
return false;
}
//输出资源分配表
void PrintTable()
{
printf("===================================资源分配表==================================\n");
printf("Process		Max          Allocation          Need          Available\n");
printf("	   A    B    C      A    B     C      A     B     C     A    B   C\n");
printf("  P0      %2d   %2d   %2d     %2d   %2d    %2d     %2d    %2d    %2d    %2d   %2d  %2d\n",Max[0].A,Max[0].B,Max[0].C,Allocation[0].A,Allocation[0].B,Allocation[0].C,Need[0].A,Need[0].B,Need[0].C,Available.A,Available.B,Available.C);
printf("  P1      %2d   %2d   %2d     %2d   %2d    %2d     %2d    %2d    %2d\n",Max[1].A,Max[1].B,Max[1].C,Allocation[1].A,Allocation[1].B,Allocation[1].C,Need[1].A,Need[1].B,Need[1].C);
printf("  P2      %2d   %2d   %2d     %2d   %2d    %2d     %2d    %2d    %2d\n",Max[2].A,Max[2].B,Max[2].C,Allocation[2].A,Allocation[2].B,Allocation[2].C,Need[2].A,Need[2].B,Need[2].C);
printf("===============================================================================\n");
}
//银行家算法分配
void banker()
{
int	ch;
//判断输入的是否是安全状态
PrintTable();
printf("先检查初始状态是否安全。\n");
if (SafeCheck())
{
printf("系统处于安全状态。\n");
printf("安全序列是{P%d,P%d,P%d}。\n",safe[0],safe[1],safe[2]);
}
else
{
printf("系统处于不安全状态。程序将退出...\n");
printf("执行完毕。\n");
getchar();
return ;
}
//开始分配
do 
{
int		process;
RES	res;
printf("请依次输入请求分配的进程和对三类资源的请求数量:");
scanf("%d%d%d%d",&process,&res.A,&res.B,&res.C);
if(process<3 && process>=0){
if (request(process,&res))
{
printf("分配成功。\n");
PrintTable();
printf("安全序列是{P%d,P%d,P%d}。\n",safe[0],safe[1],safe[2]);
}
else
{
printf("分配失败。\n");
}
printf("是否继续分配?(Y/N):");
getchar();
ch = getchar();
}else
{
printf("输入的进程号0~2\n");
ch = 'y';
}
} while (ch == 'Y' || ch == 'y');
printf("执行完毕。\n");
}
//随机分配算法执行
bool RandRequest(int process,RES *res)
{
//request向量需小于Available向量
if(res->A <= Available.A && res->B <= Available.B && res->C <= Available.C)
{
//试探分配
ProbeAlloc(process,res);
//判断进程是否执行完,执行完释放资源
if(Max[process].A <= Allocation[process].A && Max[process].B <= Allocation[process].B && Max[process].C <= Allocation[process].C)
{
printf("\nP%d 执行完毕,释放所分配的资源...\n",process);
//有则使其执行完成,并将已分配给该进程的资源全部回收
Available.A += Allocation[process].A;
Available.B += Allocation[process].B;
Available.C += Allocation[process].C;
Allocation[process].A = 0;
Allocation[process].B = 0;
Allocation[process].C = 0;
Need[process].A = Max[process].A;
Need[process].B = Max[process].B;
Need[process].C = Max[process].C;
}
return true;
}
else
{
printf("分配失败。原因:请求大于可利用资源。\n");
}
return false;
}
//随机分配
void randPatch()
{
int	ch;
//判断输入的是否是安全状态
PrintTable();
printf("先检查初始状态是否安全。\n");
if (SafeCheck())
{
printf("系统处于安全状态。\n");
printf("安全序列是{P%d,P%d,P%d}。\n",safe[0],safe[1],safe[2]);
}
else
{
printf("系统处于不安全状态。程序将退出...\n");
printf("执行完毕。\n");
getchar();
return ;
}
//开始分配
do 
{
int		process;
RES	res;
printf("请依次输入请求分配的进程和对三类资源的请求数量:");
scanf("%d%d%d%d",&process,&res.A,&res.B,&res.C);
if (RandRequest(process,&res))
{
printf("分配成功。\n");
PrintTable();
if(!SafeCheck())
{
printf("系统发生死锁。");
getchar();
getchar();	
break;
}
}
else
{
printf("分配失败。\n");
}
printf("是否继续分配?(Y/N):");
getchar();
ch = getchar();
} while (ch == 'Y' || ch == 'y');
printf("执行完毕。\n");
}
int main()
{
int x;
while(1)
{
system("clear");
printf("===============================================================================\n");
printf("\t\t\t共享资源分配与银行家算法\n");
printf("===============================================================================\n");
printf("\t\t\t 按1.导入配置信息\n");
printf("\t\t\t 按2.银行家算法\n");
printf("\t\t\t 按3.随机分配算法\n");
printf("\t\t\t 按0.退出系统\n");
printf("===============================================================================\n");
printf("您输入的是:");
scanf("%d",&x);
fflush(stdin);
system("clear");
printf("===============================================================================\n");
printf("\t\t\t共享资源分配与银行家算法");
if (x == 2)
{
printf("\t---银行家算法\n");
}else if(x==3)
{
printf("\t---随机分配算法\n");
}
printf("===============================================================================\n");
switch(x)
{
case 1: 
{
//加载配置文件
loadConfig();
//打印资源分配表
PrintTable();
getchar();
getchar();
};break;
case 2: banker();break;
case 3: randPatch(); break;
case 0: return 0;break;
default:printf("请输入0~1之间的数字\n"); 
}
}
return 0;
}

这篇关于操作系统课程设计:银行家算法与随机分配算法(linux篇)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/917960

相关文章

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法

《ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法》本文介绍了Elasticsearch的基本概念,包括文档和字段、索引和映射,还详细描述了如何通过Docker... 目录1、ElasticSearch概念2、ElasticSearch、Kibana和IK分词器部署

Linux流媒体服务器部署流程

《Linux流媒体服务器部署流程》文章详细介绍了流媒体服务器的部署步骤,包括更新系统、安装依赖组件、编译安装Nginx和RTMP模块、配置Nginx和FFmpeg,以及测试流媒体服务器的搭建... 目录流媒体服务器部署部署安装1.更新系统2.安装依赖组件3.解压4.编译安装(添加RTMP和openssl模块

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

linux进程D状态的解决思路分享

《linux进程D状态的解决思路分享》在Linux系统中,进程在内核模式下等待I/O完成时会进入不间断睡眠状态(D状态),这种状态下,进程无法通过普通方式被杀死,本文通过实验模拟了这种状态,并分析了如... 目录1. 问题描述2. 问题分析3. 实验模拟3.1 使用losetup创建一个卷作为pv的磁盘3.

Linux环境变量&&进程地址空间详解

《Linux环境变量&&进程地址空间详解》本文介绍了Linux环境变量、命令行参数、进程地址空间以及Linux内核进程调度队列的相关知识,环境变量是系统运行环境的参数,命令行参数用于传递给程序的参数,... 目录一、初步认识环境变量1.1常见的环境变量1.2环境变量的基本概念二、命令行参数2.1通过命令编程

Linux之进程状态&&进程优先级详解

《Linux之进程状态&&进程优先级详解》文章介绍了操作系统中进程的状态,包括运行状态、阻塞状态和挂起状态,并详细解释了Linux下进程的具体状态及其管理,此外,文章还讨论了进程的优先级、查看和修改进... 目录一、操作系统的进程状态1.1运行状态1.2阻塞状态1.3挂起二、linux下具体的状态三、进程的

Linux编译器--gcc/g++使用方式

《Linux编译器--gcc/g++使用方式》文章主要介绍了C/C++程序的编译过程,包括预编译、编译、汇编和链接四个阶段,并详细解释了每个阶段的作用和具体操作,同时,还介绍了调试和发布版本的概念... 目录一、预编译指令1.1预处理功能1.2指令1.3问题扩展二、编译(生成汇编)三、汇编(生成二进制机器语

Rsnapshot怎么用? 基于Rsync的强大Linux备份工具使用指南

《Rsnapshot怎么用?基于Rsync的强大Linux备份工具使用指南》Rsnapshot不仅可以备份本地文件,还能通过SSH备份远程文件,接下来详细介绍如何安装、配置和使用Rsnaps... Rsnapshot 是一款开源的文件系统快照工具。它结合了 Rsync 和 SSH 的能力,可以帮助你在 li

Linux部署jar包过程

《Linux部署jar包过程》文章介绍了在Linux系统上部署Java(jar)包时需要注意的几个关键点,包括统一JDK版本、添加打包插件、修改数据库密码以及正确执行jar包的方法... 目录linux部署jar包1.统一jdk版本2.打包插件依赖3.修改密码4.执行jar包总结Linux部署jar包部署