2024华中杯ABC题完1-3小问py代码+完整思路16页+后续参考论文

2024-04-19 05:36

本文主要是介绍2024华中杯ABC题完1-3小问py代码+完整思路16页+后续参考论文,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

                         A题太阳能路灯光伏板朝向问题

(完整版获取在文末)

 第1小问:计算每月15日的太阳直射强度和总能量

1. 理解太阳直射辐射和光伏板的关系**:光伏板接收太阳辐射并转化为电能,直射辐射对光伏板的效率影响最大。

2. 收集数据:使用附件中提供的2023年5月23日的太阳直射强度数据和1-12月份大气层外层太阳能辐射强度数值。

3. 计算太阳直射强度:根据光伏板的方位角和水平仰角,计算在不同倾角下光伏板受到的太阳直射强度。由于光伏板朝向正南方,主要考虑水平倾角对直射强度的影响。

4. 计算总能量:将每日的太阳直射强度乘以日照时间,累加得到每月的总能量。

 第2小问:设计光伏板的最佳固定朝向

1. 分析太阳直射辐射的季节性变化:根据附件中提供的1-12月份大气层外层太阳能辐射强度数值,分析太阳辐射的季节性变化规律。

2. 考虑地理位置:结合该城区的纬度和经度,考虑太阳在一年中的运动轨迹。

3. 模拟不同朝向下的接收能量:通过模拟或数学建模,计算不同朝向下光伏板一年中接收到的太阳直射辐射总能量。

4. 优化朝向:选择能使光伏板在一年中接收到最大平均太阳直射辐射总能量的朝向。

第3小问:设计最优朝向,考虑储电效率

1. 理解效率限制:光伏板在低强度和高强度直射辐射下转换效率都受限。

2. 定义理想直射强度范围:上午大于150 W/m²,下午大于100 W/m²。

3. 分析日辐射变化:使用附件中的日辐射数据,分析一天中太阳直射强度的变化。

4. 设计朝向:设计光伏板的朝向,使得在理想直射强度范围内的时间尽可能长。

5. 计算日均总能量和理想强度时长:通过计算,得出在设计的朝向下,光伏板晴天条件下的日均总能量和满足理想直射强度条件的时长。

实施步骤:

1. 数据处理:整理和分析附件中的数据,包括太阳直射强度和大气层外层太阳能辐射强度。

2. 数学建模:建立数学模型来模拟太阳直射强度和光伏板接收能量的关系。

3. 模拟分析:使用模拟软件或编程语言(如Python或MATLAB)来模拟不同朝向和倾角下的光伏板接收能量。

4. 优化算法:应用优化算法(如遗传算法、粒子群优化等)来寻找最佳朝向。

5. 结果验证:通过对比分析不同朝向下的模拟结果,验证所提出的最优朝向是否符合实际。

             B 题 使用行车轨迹估计交通信号灯周期问题

针对华中杯B题的四个小问,以下是每个小问的解决思路和可能用到的建模及机器学习算法:

### 第1小问:固定周期信号灯的估计

1. **数据分析**:首先分析附件1中的轨迹数据,确定车辆通过路口的模式。

2. **特征工程**:提取时间戳和车辆ID作为特征。

3. **周期性检测**:使用傅里叶变换(FFT)或自相关函数(ACF)来识别周期性。

4. **统计分析**:应用统计方法,如卡方检验,来确定车辆通过模式与信号灯周期的关系。

5. **模型建立**:使用简单的周期性回归模型,如正弦或余弦函数,来拟合信号灯周期。

### 第2小问:样本车辆比例和定位误差的影响

1. **模拟分析**:模拟不同样本车辆比例和定位误差对模型精度的影响。

2. **敏感性分析**:进行敏感性分析,了解不同因素如何影响周期估计的准确性。

3. **机器学习算法**:可能需要使用决策树或随机森林等算法来评估不同因素对模型输出的影响。

### 第3小问:变化信号灯周期的检测

1. **时间序列分析**:使用ARIMA或季节性分解的时间序列预测(STL)来识别周期性变化。

2. **异常检测**:采用异常检测算法,如Isolation Forest或One-Class SVM,来识别周期性变化的模式。

3. **实时监测**:设计一个实时监测系统,使用滑动窗口方法来持续分析信号灯周期。

### 第4小问:多方向信号灯周期的识别

1. **多变量分析**:分析所有方向的车辆轨迹数据,寻找共同的周期性模式。

2. **聚类算法**:使用K-means或DBSCAN等聚类算法来识别不同方向的周期性模式。

3. **深度学习**:可能需要使用深度学习算法,如LSTM或GRU,来处理复杂的时间序列数据。

### 通用步骤:

- **数据预处理**:包括数据清洗、缺失值处理、异常值检测和处理。

- **特征选择**:选择与信号灯周期最相关的特征进行分析。

- **模型选择**:根据问题的复杂性和数据的特点选择合适的模型。

- **模型训练与验证**:使用交叉验证等方法来训练和验证模型。

- **结果解释**:对模型的输出进行解释,确定信号灯周期及其变化。

           C题:基于光纤传感器的平面曲线重建算法建模

针对华中杯C题,我们可以根据题目要求,将问题分解为几个小问,并为每个小问提供解决思路。以下是每个小问的解决思路和可能用到的建模及机器学习算法:

### 问题1:估算传感点的曲率

1. **理解问题**:首先理解波长与曲率之间的关系,以及如何从波长变化估算曲率变化。

2. **数学建模**:使用给定的关系式 \( k = \frac{c(\lambda - \lambda_0)}{\lambda_0} \) 来计算每个传感器点的曲率,其中 \( c \) 是常数,\( \lambda_0 \) 是初始波长,\( \lambda \) 是受力后的波长。

3. **数据处理**:处理表1中的波长数据,计算每个传感器在两种状态下的曲率。

### 问题2:重构平面曲线

1. **曲线拟合**:使用问题1中计算出的曲率数据,通过多项式拟合或其他曲线拟合技术来重构曲线。

2. **参数选择**:确定初始点坐标、水平方向和垂直方向的定义,以及切线与水平方向的夹角。

3. **模型建立**:基于这些参数和曲率数据,构建一个数学模型来估算不同横坐标位置处的曲率。

### 问题3:重构平面曲线并分析误差

1. **采样点选择**:根据给定的平面曲线方程 \( y = f(x) \),以适当的等间距弧长采样来确定曲线上的点。

2. **曲率计算**:对这些采样点使用问题1中的模型来计算曲率。

3. **误差分析**:比较重构曲线与原始曲线之间的差异,分析误差来源,如采样密度、模型假设等。

### 通用步骤:

- **数据预处理**:确保数据的准确性和完整性。

- **模型选择**:根据问题的具体情况选择适当的数学模型和算法。

- **算法实现**:使用适当的编程语言(如Python、MATLAB)来实现所选模型和算法。

- **结果验证**:通过比较模型预测与实际数据来验证模型的有效性。

对于C题,主要涉及的是数学建模和物理原理的应用,而不是传统意义上的机器学习问题。因此,可能用到的算法和技术包括:

- **多项式回归**:用于曲线拟合。

- **数值分析方法**:如牛顿法、梯度下降等,用于优化问题求解。

- **微积分**:用于计算曲率和其他导数相关的量。

- **计算机图形学**:用于可视化重构的曲线和分析误差。

2024华中杯A题完整思路+完整数据+可执行代码+后续参考论文


2024华中杯B题完整思路+完整数据+可执行代码+后续参考论文


2024华中杯C题完整思路+完整数据+可执行代码+后续参考论文
 

这篇关于2024华中杯ABC题完1-3小问py代码+完整思路16页+后续参考论文的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/916738

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题

题库来源:安全生产模拟考试一点通公众号小程序 2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题是由安全生产模拟考试一点通提供,流动式起重机司机证模拟考试题库是根据流动式起重机司机最新版教材,流动式起重机司机大纲整理而成(含2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题参考答案和部分工种参考解析),掌握本资料和学校方法,考试容易。流动式起重机司机考试技

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

高效录音转文字:2024年四大工具精选!

在快节奏的工作生活中,能够快速将录音转换成文字是一项非常实用的能力。特别是在需要记录会议纪要、讲座内容或者是采访素材的时候,一款优秀的在线录音转文字工具能派上大用场。以下推荐几个好用的录音转文字工具! 365在线转文字 直达链接:https://www.pdf365.cn/ 365在线转文字是一款提供在线录音转文字服务的工具,它以其高效、便捷的特点受到用户的青睐。用户无需下载安装任何软件,只

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能