数据库引论:5、关系数据库设计理论

2024-04-18 21:13

本文主要是介绍数据库引论:5、关系数据库设计理论,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

5.1 好的关系设计的特点

​ 没有冗余,例如 i n _ d e p in\_dep in_dep模式:
i n _ d e p ( I D , n a m e , s a l a r y , d e p t _ n a m e , b u i l d i n g , b u d g e t ) in\_dep(ID,name,salary,dept\_name,building,budget) in_dep(ID,name,salary,dept_name,building,budget)
​ 表示 i n s t r u c t o r instructor instructor d e p a r t m e n t department department的关系上进行自然连接的结果,但实际上存在许多冗余,对于同一个院系的老师(例如 C o m p . S c i . Comp.Sci. Comp.Sci.),每一个元组都在 b u i l d i n g building building属性上冗余了。

​ 此外,如果想要创建一个新的院系,是一件比较麻烦的事情,或许可以通过插入空值来实现,但这样可能会导致不可预料的错误。

​ 那么这个模式就不是一个好的关系

5.1.1 分解

​ 避免模式中信息重复的唯一方式是将其分解为两个模式,单并非所有的模式分解都是有益的,例如:
e m p l o y e e ( I D , n a m e , s t r e e t , c i t y , s a l a r y ) employee(ID,name,street,city,salary) employee(ID,name,street,city,salary)
​ 分解为以下两个模式:
KaTeX parse error: Expected 'EOF', got '&' at position 2: &̲employee1(ID,na…
​ 存在如下缺陷:如果存在同名的两个员工,我们将其自然连接后,无法分辨到底是谁,反而多了很多无意义的元组。实际上,分解后得到了更多的元组,但却获得了更少的信息,这是因为我们丢失了正确连接的信息。

​ 我们将这样的分解称为有损分解,而将那些没有信息丢失的称为无损分解

图1 不好的分解导致信息丢失

5.1.2 无损分解

​ 令 R R R为关系模式,并令 R 1 R_1 R1 R 2 R_2 R2构成 R R R的分解,即 R = R 1 ∪ R 2 R=R_1\cup R_2 R=R1R2,如果对于所有合法的数据库实例,关系 r r r都包含与下述SQL查询的结果相同的元组集,我们称该分解是无损的:

	select *from (select R1 from r)natural join(select R2 from r)

​ 或用关系代数表示为: Π R 1 ( r ) ⋈ Π R 2 ( r ) = r \Pi_{R_1}(r)\Join \Pi_{R_2}(r)=r ΠR1(r)ΠR2(r)=r

​ 类似的,如果 r r r是真子集,即$r\sub\Pi_{R_1}®\Join \Pi_{R_2} $,那么分解是有损的

5.2 使用函数依赖进行分解

​ 在真实世界中的数据上通常存在各种约束(规则)。例如,在一个大学数据库中期望满足的一些约束有:

  1. 学生和教师通过他们的ID来唯一识别
  2. 每位学生和教师只有一个名字
  3. 每位教师和学生只(主要)关联一个系
  4. 每个系只有一个预算值,并且只有一栋关联的办公楼

​ 一个关系的满足所有这种真实世界约束的实例被称为该关系的合法实例(legal instance)

5.2.2 码和函数依赖

​ 在之前,我们将超码定义为:能够一起来唯一标识出关系中一个元组的一个或多个属性的集合。在这里,重新定义如下:

​ 给定 r ( R ) r(R) r(R) R R R的一个子集 K K K r ( R ) r(R) r(R)超码的条件是:

​ 在 r ( R ) r(R) r(R)的任意合法实例中,对于 r r r的实例中的所有元组对 t 1 t_1 t1 t 2 t_2 t2总满足:若 t 1 ≠ t 2 t_1\ne t_2 t1=t2 t 1 [ K ] ≠ t 2 [ K ] t_1[K]\neq t_2[K] t1[K]=t2[K],也就是在关系 r ( R ) r(R) r(R)的任意合法实例中,不存在两个元组在属性值 K K K上具有相同的值。

​ 考虑一个关系模式 r ( R ) r(R) r(R),并且令 α ⊆ R \alpha \subseteq R αR β ⊆ R \beta \subseteq R βR

  • 给定 r ( R ) r(R) r(R)的一个实例,如果对于该实例中的所有元组对 t 1 t_1 t1 t 2 t_2 t2,使得若 t 1 [ α ] = t 2 [ α ] t_1[\alpha]=t_2[\alpha] t1[α]=t2[α],则 t 1 [ β ] = t 2 [ β ] t_1[\beta]=t_2[\beta] t1[β]=t2[β]也成立,那么我们称该实例满足函数依赖 α → β \alpha \rightarrow \beta αβ
  • 如果 r ( R ) r(R) r(R)的每个合法实例都满足函数依赖 α → β \alpha\rightarrow \beta αβ,则我们称该函数依赖在模式 r ( R ) r(R) r(R)成立(hold)

​ 利用函数依赖的表达方式,我们可以对超码和候选码进行重新定义

K K K是关系表 R R R的一个超码,如果 K → R K\rightarrow R KR

K K K是关系表 R R R的一个候选码,如果 K → R a n d n o a ⊂ K , a → R K\rightarrow R \ and\ no \ a\subset K,a\rightarrow R KR and no aK,aR

​ 考虑之前提过的模式:
i n _ d e p ( I D , n a m e , s a l a r y , d e p t _ n a m e , b u i l d i n g , b u d g e t ) in\_dep(ID,name,salary,dept\_name,building,budget) in_dep(ID,name,salary,dept_name,building,budget)
​ 对于一个系,他的预算是唯一的,那么函数依赖 d e p t _ n a m e → b u d g e t dept\_name\rightarrow budget dept_namebudget成立,此外,属性对 ( I D , d e p t _ n a m e ) (ID,dept\_name) (ID,dept_name)构成 i n _ d e p in\_dep in_dep的一个超码,可写作:
I D , d e p t _ n a m e → n a m e , s a l a r y , b u i l d i n g , b u d g e t ID,dept\_name \rightarrow name,salary,building,budget IDdept_namename,salary,building,budget
​ 我们可以发现,函数依赖是否成立,取决于现实世界的一些约束,比如一个学生只能有一个院系,那么 s t u d e n t _ I D → d e p t _ n a m e student\_ID\rightarrow dept\_name student_IDdept_name是成立的,而相反,尽管表中的每一个实例都满足某一个依赖,也不能断定函数依赖成立。

​ 有些函数依赖被称为是平凡的(trival),因为它们被所有关系满足,例如 A → A , A B → A A\rightarrow A,AB\rightarrow A AA,ABA,一般地,如果 β ⊆ α \beta \subseteq \alpha βα,则形如 α → β \alpha\rightarrow \beta αβ地函数依赖是平凡的。

​ 一个关系的实例可能满足的某些函数依赖并不需要在关系的模式上成立。

闭包:包含集合 F F F中的所有函数依赖。使用符号 F + F^+ F+来表示,即为能够从给定的集合 F F F推导出的所有函数依赖的集合。

Armstrong’s Axiom

  1. 自反律:如果 β ⊆ α \beta \subseteq \alpha βα,则 α → β \alpha \rightarrow \beta αβ
  2. 增广律:如果 α → β \alpha\rightarrow \beta αβ,则 γ α → γ β \gamma\alpha\rightarrow \gamma\beta γαγβ
  3. 传递律:如果 α → β , β → γ \alpha\rightarrow\beta,\beta\rightarrow\gamma αβ,βγ,则 α → γ \alpha\rightarrow\gamma αγ

这个公理是正确且完备的

通过公理可推导出:

  1. 合并规则:如果 α → β , α → γ \alpha\rightarrow\beta,\alpha\rightarrow\gamma αβ,αγ,则 α → β γ \alpha\rightarrow\beta\gamma αβγ
  2. 分解规则:如果 α → β γ \alpha\rightarrow\beta\gamma αβγ,则 α → β , α → γ \alpha\rightarrow\beta,\alpha\rightarrow\gamma αβ,αγ
  3. 伪传递规则:如果 α → β , γ β → δ \alpha\rightarrow\beta,\gamma\beta\rightarrow\delta αβ,γβδ,则 α γ → δ \alpha\gamma\rightarrow\delta αγδ

例子:
R = ( A , B , C , G , H , I ) F = { A → B , A → C , C G → H , C G → I , B → H } R=(A,B,C,G,H,I)\ F=\{A\rightarrow B,A\rightarrow C,CG\rightarrow H,CG\rightarrow I,B\rightarrow H\} R=(A,B,C,G,H,I) F={AB,AC,CGH,CGI,BH}

A → H , A G → I , C G → H I , ⋯ ∈ F + A\rightarrow H,AG\rightarrow I,CG\rightarrow HI,\cdots \in F^+ AH,AGI,CGHI,F+

属性集闭包(Closure of attributes sets)

​ 给定一组属性 α \alpha α,定义属性 α \alpha α F F F下的闭包为: α → β ∈ F + ⟺ β ⊆ α + \alpha\rightarrow\beta \in F^+ \Longleftrightarrow \beta \subseteq \alpha^+ αβF+βα+

​ 计算 α + \alpha^+ α+的算法:
KaTeX parse error: Expected 'EOF', got '&' at position 2: &̲result:=\alpha;…
例子:

R = ( A , B , C , G , H , I ) , F = { A → B , A → C , C G → H , C G → I , B → H } R=(A,B,C,G,H,I),F=\{A\rightarrow B,A\rightarrow C,CG\rightarrow H,CG\rightarrow I,B\rightarrow H\} R=(A,B,C,G,H,I),F={AB,AC,CGH,CGI,BH}

计算 ( A G ) + (AG)^+ (AG)+

​ result = AG

​ result = ABCG( A → C , A → B A\rightarrow C ,A\rightarrow B AC,AB)

​ resullt = ABCGH ( C G → H CG\rightarrow H CGH)

​ result = ABCGHI=R ( C G → I CG\rightarrow I CGI)

A G AG AG是超键吗?

​ 是否有 A G → R AG\rightarrow R AGR? 显然 R ⊆ ( A G ) + R\subseteq (AG)^+ R(AG)+

A G AG AG是候选码吗?

​ 是否有 A → R A\rightarrow R AR?计算可得 ( A ) + = A B C H (A)^+=ABCH (A)+=ABCH,

​ 是否有 G → R G\rightarrow R GR?计算可得 ( G ) + = G (G)^+=G (G)+=G

最小覆盖(Canonical cover)

例如:

  • 在右边: { A → B , B → C , A → C D } \{A\rightarrow B,B\rightarrow C,A\rightarrow CD\} {AB,BC,ACD}可被简化为 { A → B , B → C , A → D } \{A\rightarrow B,B\rightarrow C,A\rightarrow D\} {AB,BC,AD} (缩小的过程)
  • 在左边: { A → B , B → C , A C → D } \{A\rightarrow B,B\rightarrow C,AC\rightarrow D\} {AB,BC,ACD}可被简化为 { A → B , B → C , A → D } \{A\rightarrow B,B\rightarrow C,A \rightarrow D\} {AB,BC,AD} (放大的过程)

最小覆盖:最简形式的 F F F

无关属性:考虑 F F F中的一个依赖 α → β \alpha\rightarrow \beta αβ

  • 属性A在左侧是无关的:如果 A ∈ α A\in \alpha Aα并且 F F F满足, ( F − { α → β } ) ∪ { ( α − A ) → β } (F-\{\alpha\rightarrow \beta\})\cup\{(\alpha-A)\rightarrow\beta\} (F{αβ}){(αA)β}
  • 属性A在右侧是无关的:如果 A ∈ β A\in\beta Aβ并且 F F F满足, ( F − { α → β } ) ∪ { ( α → ( β − A ) ) } (F-\{\alpha\rightarrow\beta\})\cup\{(\alpha\rightarrow(\beta-A))\} (F{αβ}){(α(βA))}
检测某一属性是否多余

​ 考虑 α ∈ β \alpha\in\beta αβ

  • 为了检测左侧的属性 A A A是否多余:
    • 利用 F F F中的依赖,计算 ( { α } − A ) + (\{\alpha\}-A)^+ ({α}A)+
    • 检查这个闭包,如果包含 β \beta β,那么A是多余的
  • 为了检测右侧的属性 B B B是否多余:
    • 利用 F ′ = ( F − { α → β } ∪ { α → ( β − A ) } ) F'=(F-\{\alpha\rightarrow\beta\}\cup\{\alpha\rightarrow(\beta-A)\}) F=(F{αβ}{α(βA)})中的依赖关系,计算闭包 α + \alpha ^+ α+
    • 如果闭包包含A,那么确实多余。

最小覆盖的严格定义

F F F的最小覆盖是依赖的一个集合 F c F_c Fc,满足:

  • F F F可以推导出 F c F_c Fc中的所有关系,反之亦然
  • F c F_c Fc中的所有依赖没有多余的属性
  • F c F_c Fc中的所有依赖,他们的左边都是唯一的,例如,没有这样两个依赖: α 1 → β 1 , α 2 → β 2 \alpha_1\rightarrow\beta_1,\alpha_2\rightarrow\beta_2 α1β1,α2β2,有 α 1 = α 2 \alpha_1=\alpha_2 α1=α2

计算最小覆盖的算法

伪代码:

repeat

​ 用集合的并来替换 F F F中形如 α 1 → β 1 a n d α 2 → β 2 \alpha_1\rightarrow\beta_1\ and\ \alpha_2\rightarrow\beta_2 α1β1 and α2β2 α 1 → β 1 β 2 \alpha_1\rightarrow\beta_1\beta_2 α1β1β2

​ 找多余的属性,并删除

until F不再变化

找候选码

​ 对于 R ( A 1 , A 2 , ⋯ , A n ) R(A_1,A_2,\cdots,A_n) R(A1,A2,,An)以及 F F F中的依赖关系,所有属性都可以被分类为4类:

  1. L L L:属性只出现在左侧
  2. R R R:属性只出现在右侧
  3. N N N:属性在两侧均未出现
  4. L R LR LR:属性出现在两侧

算法伪代码:

  1. 对所有属性分类: x x x代表 L L L N N N类, y y y代表 L R LR LR
  2. 计算 x + x^+ x+,如果 x x x包含 R R R中的所有属性,那么 x x x就是唯一的候选码,结束算法
  3. y y y中取属性 A A A,计算 ( x A ) + (xA)^+ (xA)+,如果 ( x A ) + (xA)^+ (xA)+包含 R R R中的所有属性,那么 x A xA xA R R R的一个候选码。继续选取,知道 y y y中属性的所有组合都被选过
  4. 结束,输出结果

无损链接分解

即无损分解,对于 R R R表中的所有属性,必须出现在分解 ( R 1 , R 2 ) (R_1,R_2) (R1,R2)中,即 R = R 1 ∪ R 2 R=R_1\cup R_2 R=R1R2,对于 R R R上所有可能的关系 r r r,有 r = Π R 1 ( r ) ⋈ Π R 2 ( r ) r=\Pi_{R_1}(r)\Join \Pi_{R_2}(r) r=ΠR1(r)ΠR2(r)

无损分解的判断

​ 对于 ( R ) = ( R 1 , R 2 ) (R)=(R_1,R_2) (R)=(R1,R2),它是一个无损分解,当且仅当

  • R 1 ∩ R 2 → R 1 R_1 \cap R_2 \rightarrow R_1 R1R2R1
  • R 1 ∩ R 2 → R 2 R_1\cap R_2 \rightarrow R_2 R1R2R2

​ 至少满足一个。

例如:给定 R < U , F > R<U,F> R<U,F>, U = { A , B , C , D , E } , F = { A B → C , C → D , D → E } U=\{A,B,C,D,E\},F=\{AB\rightarrow C,C\rightarrow D,D\rightarrow E\} U={A,B,C,D,E},F={ABC,CD,DE} R R R上的一个分解为: R 1 ( A , B , C ) , R 2 ( C , D ) , R 3 ( D , E ) R1(A,B,C),R2(C,D),R3(D,E) R1(A,B,C),R2(C,D),R3(D,E),判断是否为无损分解

P r o o f : Proof: Proof:
R 1 ∩ R 2 = C C → A B C ? 没有这个依赖关系 C → C D √ R 2 ∩ R 3 = D D → C D ? 没有这个依赖关系 D → D E √ R1\cap R2=C\\ C\rightarrow ABC \ ? 没有这个依赖关系\\ C\rightarrow CD \ √ \\ R2 \cap R3= D \\ D\rightarrow CD \ ? 没有这个依赖关系\\ D\rightarrow DE \ √ R1R2=CCABC ?没有这个依赖关系CCD R2R3=DDCD ?没有这个依赖关系DDE 
所以是无损分解。

这篇关于数据库引论:5、关系数据库设计理论的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/915849

相关文章

基于C++的UDP网络通信系统设计与实现详解

《基于C++的UDP网络通信系统设计与实现详解》在网络编程领域,UDP作为一种无连接的传输层协议,以其高效、低延迟的特性在实时性要求高的应用场景中占据重要地位,下面我们就来看看如何从零开始构建一个完整... 目录前言一、UDP服务器UdpServer.hpp1.1 基本框架设计1.2 初始化函数Init详解

JavaWeb项目创建、部署、连接数据库保姆级教程(tomcat)

《JavaWeb项目创建、部署、连接数据库保姆级教程(tomcat)》:本文主要介绍如何在IntelliJIDEA2020.1中创建和部署一个JavaWeb项目,包括创建项目、配置Tomcat服务... 目录简介:一、创建项目二、tomcat部署1、将tomcat解压在一个自己找得到路径2、在idea中添加

Springboot3统一返回类设计全过程(从问题到实现)

《Springboot3统一返回类设计全过程(从问题到实现)》文章介绍了如何在SpringBoot3中设计一个统一返回类,以实现前后端接口返回格式的一致性,该类包含状态码、描述信息、业务数据和时间戳,... 目录Spring Boot 3 统一返回类设计:从问题到实现一、核心需求:统一返回类要解决什么问题?

MySQL MHA集群详解(数据库高可用)

《MySQLMHA集群详解(数据库高可用)》MHA(MasterHighAvailability)是开源MySQL高可用管理工具,用于自动故障检测与转移,支持异步或半同步复制的MySQL主从架构,本... 目录mysql 高可用方案:MHA 详解与实战1. MHA 简介2. MHA 的组件组成(1)MHA

MySQL 数据库进阶之SQL 数据操作与子查询操作大全

《MySQL数据库进阶之SQL数据操作与子查询操作大全》本文详细介绍了SQL中的子查询、数据添加(INSERT)、数据修改(UPDATE)和数据删除(DELETE、TRUNCATE、DROP)操作... 目录一、子查询:嵌套在查询中的查询1.1 子查询的基本语法1.2 子查询的实战示例二、数据添加:INSE

通过DBeaver连接GaussDB数据库的实战案例

《通过DBeaver连接GaussDB数据库的实战案例》DBeaver是一个通用的数据库客户端,可以通过配置不同驱动连接各种不同的数据库,:本文主要介绍通过DBeaver连接GaussDB数据库的... 目录​一、前置条件​二、连接步骤​三、常见问题与解决方案​1. 驱动未找到​2. 连接超时​3. 权限不

MySQL数据库读写分离与负载均衡的实现逻辑

《MySQL数据库读写分离与负载均衡的实现逻辑》读写分离与负载均衡是数据库优化的关键策略,读写分离的核心是将数据库的读操作与写操作分离,本文给大家介绍MySQL数据库读写分离与负载均衡的实现方式,感兴... 目录读写分离与负载均衡的核心概念与目的读写分离的必要性与实现逻辑读写分离的实现方式及优缺点读负载均衡

Go语言中如何进行数据库查询操作

《Go语言中如何进行数据库查询操作》在Go语言中,与数据库交互通常通过使用数据库驱动来实现,Go语言支持多种数据库,如MySQL、PostgreSQL、SQLite等,每种数据库都有其对应的官方或第三... 查询函数QueryRow和Query详细对比特性QueryRowQuery返回值数量1个:*sql

Mysql数据库聚簇索引与非聚簇索引举例详解

《Mysql数据库聚簇索引与非聚簇索引举例详解》在MySQL中聚簇索引和非聚簇索引是两种常见的索引结构,它们的主要区别在于数据的存储方式和索引的组织方式,:本文主要介绍Mysql数据库聚簇索引与非... 目录前言一、核心概念与本质区别二、聚簇索引(Clustered Index)1. 实现原理(以 Inno

sqlserver、mysql、oracle、pgsql、sqlite五大关系数据库的对象名称和转义字符

《sqlserver、mysql、oracle、pgsql、sqlite五大关系数据库的对象名称和转义字符》:本文主要介绍sqlserver、mysql、oracle、pgsql、sqlite五大... 目录一、转义符1.1 oracle1.2 sqlserver1.3 PostgreSQL1.4 SQLi