Qwen量化脚本run_gptq.py解析

2024-04-18 14:12
文章标签 解析 py 脚本 量化 run qwen gptq

本文主要是介绍Qwen量化脚本run_gptq.py解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Qwen量化脚本run_gptq.py解析

代码路径 https://github.com/QwenLM/Qwen/
run_gptq.py路径 https://github.com/QwenLM/Qwen/blob/main/run_gptq.py

代码解析:

import argparse
import json
from typing import Dict
import loggingimport torch
import transformers
from transformers import AutoTokenizer
from transformers.trainer_pt_utils import LabelSmoother
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
IGNORE_TOKEN_ID = LabelSmoother.ignore_index#其中json文件格式如下
# [
#   {
#     "id": "identity_0",
#     "conversations": [
#       {
#         "from": "user",
#         "value": "xxxx"
#       },
#       {
#         "from": "assistant",
#         "value": "xxx"
#       }
#     ]
#   },
#   {
#     "id": "identity_1",
#     "conversations": [
#       {
#         "from": "user",
#         "value": "xxx"
#       },
#       {
#         "from": "assistant",
#         "value": "xxx"
#       }
#     ]
#   },
# ]def preprocess(sources,tokenizer: transformers.PreTrainedTokenizer,max_len: int,system_message: str = "You are a helpful assistant."
) -> Dict:"""preprocess函数接收一个包含对话数据的json列表作为输入,\n通过调用transformers库中的tokenizer对数据进行编码,\n并按照特定格式构建输入ID序列和目标ID序列.\n返回一个包含预处理数据的列表,这些数据已转换为PyTorch张量,适合于后续模型训练或推断"""#roles字典:为对话中的角色("user"和"assistant")分配特殊的前缀标签,用于区分对话双方roles = {"user": "<|im_start|>user", "assistant": "<|im_start|>assistant"}#im_start和im_end:指定tokenizer中im_start_id和im_end_id对应的整数ID。im_start = tokenizer.im_start_idim_end = tokenizer.im_end_id#nl_tokens:存储tokenizer处理换行符\n得到的输入ID序列。nl_tokens = tokenizer('\n').input_ids#_system、_user和_assistant:分别存储经过tokenizer处理后的"system"、"user"和"assistant"标签及其后的换行符对应的输入ID序列。_system = tokenizer('system').input_ids + nl_tokens_user = tokenizer('user').input_ids + nl_tokens_assistant = tokenizer('assistant').input_ids + nl_tokens# Apply prompt templates 定义空列表data,用于存放预处理后的数据样本data = []# input_ids, targets = [], []#遍历输入数据sources中的每个样本(source)for i, source in enumerate(sources):source = source["conversations"]#检查首个对话是否由用户发起(即source[0]["from"]是否为"user"),如果不是,则从源数据中移除首个对话。#过滤无效的identityif roles[source[0]["from"]] != roles["user"]:source = source[1:]#初始化空列表input_id和target,分别用于存储当前样本的输入ID序列和目标ID序列input_id, target = [], []#添加系统消息:将系统消息(包含system_message内容)转换为ID序列,添加到input_id和target中。system = [im_start] + _system + tokenizer(system_message).input_ids + [im_end] + nl_tokensinput_id += system#target中的非关键部分(如系统标签和消息内容)用IGNORE_TOKEN_ID填充。target += [im_start] + [IGNORE_TOKEN_ID] * (len(system)-3) + [im_end] + nl_tokensassert len(input_id) == len(target)#遍历源数据中的每个对话(sentence)for j, sentence in enumerate(source):# 提取角色和消息内容,并转换为ID序列role = roles[sentence["from"]]_input_id = tokenizer(role).input_ids + nl_tokens + \tokenizer(sentence["value"]).input_ids + [im_end] + nl_tokens#添加到input_id中input_id += _input_id#根据角色类型,生成对应_target的目标ID序列,_target只提取assistant的对话内容,忽略user的对话内容。if role == '<|im_start|>user':#若角色为"user",则目标ID序列仅包含开始标签和结束标签,用忽略ID填充对话内容。_target = [im_start] + [IGNORE_TOKEN_ID] * (len(_input_id)-3) + [im_end] + nl_tokens#若角色为"assistant",则目标ID序列包含开始标签、忽略ID填充(仅对角色标签)、对话内容(不包括角色标签和结束标签)、结束标签elif role == '<|im_start|>assistant':_target = [im_start] + [IGNORE_TOKEN_ID] * len(tokenizer(role).input_ids) + \_input_id[len(tokenizer(role).input_ids)+1:-2] + [im_end] + nl_tokenselse:raise NotImplementedErrortarget += _targetassert len(input_id) == len(target)#截取并转换为张量:#截取input_id和target至最大长度max_leninput_id = torch.tensor(input_id[:max_len], dtype=torch.int)target = torch.tensor(target[:max_len], dtype=torch.int)#创建一个字典,包含键input_ids(存储输入张量)和attention_mask(等于输入张量,用于指示非填充位置)。将该字典添加到data列表中data.append(dict(input_ids=input_id, attention_mask=input_id.ne(tokenizer.pad_token_id)))return dataif __name__ == "__main__":parser = argparse.ArgumentParser("Model Quantization using AutoGPTQ")parser.add_argument("--model_name_or_path", type=str, help="model path")parser.add_argument("--data_path", type=str, help="calibration data path")parser.add_argument("--out_path", type=str, help="output path of the quantized model")parser.add_argument("--max_len", type=int, default=8192, help="max length of calibration data")parser.add_argument("--bits", type=int, default=4, help="the bits of quantized model. 4 indicates int4 models.")parser.add_argument("--group-size", type=int, default=128, help="the group size of quantized model")args = parser.parse_args()quantize_config = BaseQuantizeConfig(bits=args.bits,group_size=args.group_size,damp_percent=0.01,desc_act=False,  # set to False can significantly speed up inference but the perplexity may slightly badstatic_groups=False,sym=True,true_sequential=True,model_name_or_path=None,model_file_base_name="model")#使用AutoTokenizer类从给定路径args.model_name_or_path加载预训练的tokenizertokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, trust_remote_code=True)tokenizer.pad_token_id = tokenizer.eod_id#加载json数据文件,调用process函数预处理数据,返回处理后的数据data = preprocess(json.load(open(args.data_path)), tokenizer, args.max_len)#加载预训练的模型model = AutoGPTQForCausalLM.from_pretrained(args.model_name_or_path, quantize_config, device_map="auto", trust_remote_code=True)logging.basicConfig(format="%(asctime)s %(levelname)s [%(name)s] %(message)s", level=logging.INFO, datefmt="%Y-%m-%d %H:%M:%S")#对模型进行量化,不在GPU上缓存示例数据model.quantize(data, cache_examples_on_gpu=False)#保存量化后的模型model.save_quantized(args.out_path, use_safetensors=True)#将tokenizer保存到输出路径tokenizer.save_pretrained(args.out_path)

这篇关于Qwen量化脚本run_gptq.py解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/915011

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

Linux下MySQL数据库定时备份脚本与Crontab配置教学

《Linux下MySQL数据库定时备份脚本与Crontab配置教学》在生产环境中,数据库是核心资产之一,定期备份数据库可以有效防止意外数据丢失,本文将分享一份MySQL定时备份脚本,并讲解如何通过cr... 目录备份脚本详解脚本功能说明授权与可执行权限使用 Crontab 定时执行编辑 Crontab添加定

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

Java Scanner类解析与实战教程

《JavaScanner类解析与实战教程》JavaScanner类(java.util包)是文本输入解析工具,支持基本类型和字符串读取,基于Readable接口与正则分隔符实现,适用于控制台、文件输... 目录一、核心设计与工作原理1.底层依赖2.解析机制A.核心逻辑基于分隔符(delimiter)和模式匹

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装