超平实版Pytorch CNN Conv2d

2024-04-18 08:20
文章标签 cnn pytorch conv2d 平实

本文主要是介绍超平实版Pytorch CNN Conv2d,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

torch.nn.Conv2d

基本参数

in_channels (int)
        输入的通道数量。比如一个2D的图片,由R、G、B三个通道的2D数据叠加。

out_channels (int)
        输出的通道数量。

kernel_size (int or tuple)
        kernel(也就是卷积核,也可以称为filter)的形状

bias (bool, optional)
        是否加上一个可学习的bias。 Default: True.

stride (int or tuple)
        卷积步长。

注:关于为什么kernel_size和stride可以有int、tuple两种表示方式

如果是int,就是对于高那条边、宽那条边应用一样的值。比如如果你的kernel是int,那就是一个正方形的kernel。
如果是tuple,则第1个值应用在高那条边上,第2个值应用在宽那条边上!

 

输入输出的形状

输入形状:
     ( N , C i n , H , W ) (N, C_{in}, H, W) (N,Cin,H,W)
     N N N是batch size
     C i n C_{in} Cin是输出的通道数量
     H H H是2D input的高度
     W W W是2D input的宽度

输出形状:
     ( N , C o u t , H o u t , W o u t ) (N, C_{out}, H_{out}, W_{out}) (N,Cout,Hout,Wout)

 

公式

在这里插入图片描述

公式左边:
         N N N是batch size
         C o u t C_{out} Cout是输出的通道
        (i, j)是索引

        所以这里的 o u t ( N i , C o u t j ) out(N_i, {C_{out}}_j) out(Ni,Coutj)指的就是当前batch中第I个数据的第j个通道的情况。
        你就理解为,现在开始我们抛开batch不谈,且就看一个通道。

 
公式右边:
        五角星理解为一个操作
         k k k是在数数,从0数到 C i n − 1 C_{in-1} Cin1,也就是循环一遍input中的通道数量而已。

 

图例

(图片引用自Apply a 2D Convolution Operation in PyTorch)
在这里插入图片描述

对于每一次kernel的移动:完全对应的位置,数字两两相乘,然后每一对的结果相加,最后加上bias。这里不确定为什么kernel画了三个颜色,我觉得可能只是表示下面计算的顺序是从左到右、从上到下写的。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

参考文档

  1. Pytorch Conv2d文档
  2. Apply a 2D Convolution Operation in PyTorch
  3. PyTorch 2D Convolution

这篇关于超平实版Pytorch CNN Conv2d的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/914251

相关文章

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的

Pytorch微调BERT实现命名实体识别

《Pytorch微调BERT实现命名实体识别》命名实体识别(NER)是自然语言处理(NLP)中的一项关键任务,它涉及识别和分类文本中的关键实体,BERT是一种强大的语言表示模型,在各种NLP任务中显著... 目录环境准备加载预训练BERT模型准备数据集标记与对齐微调 BERT最后总结环境准备在继续之前,确

pytorch+torchvision+python版本对应及环境安装

《pytorch+torchvision+python版本对应及环境安装》本文主要介绍了pytorch+torchvision+python版本对应及环境安装,安装过程中需要注意Numpy版本的降级,... 目录一、版本对应二、安装命令(pip)1. 版本2. 安装全过程3. 命令相关解释参考文章一、版本对

从零教你安装pytorch并在pycharm中使用

《从零教你安装pytorch并在pycharm中使用》本文详细介绍了如何使用Anaconda包管理工具创建虚拟环境,并安装CUDA加速平台和PyTorch库,同时在PyCharm中配置和使用PyTor... 目录背景介绍安装Anaconda安装CUDA安装pytorch报错解决——fbgemm.dll连接p

pycharm远程连接服务器运行pytorch的过程详解

《pycharm远程连接服务器运行pytorch的过程详解》:本文主要介绍在Linux环境下使用Anaconda管理不同版本的Python环境,并通过PyCharm远程连接服务器来运行PyTorc... 目录linux部署pytorch背景介绍Anaconda安装Linux安装pytorch虚拟环境安装cu

PyTorch使用教程之Tensor包详解

《PyTorch使用教程之Tensor包详解》这篇文章介绍了PyTorch中的张量(Tensor)数据结构,包括张量的数据类型、初始化、常用操作、属性等,张量是PyTorch框架中的核心数据结构,支持... 目录1、张量Tensor2、数据类型3、初始化(构造张量)4、常用操作5、常用属性5.1 存储(st

深度学习实战:如何利用CNN实现人脸识别考勤系统

1. 何为CNN及其在人脸识别中的应用 卷积神经网络(CNN)是深度学习中的核心技术之一,擅长处理图像数据。CNN通过卷积层提取图像的局部特征,在人脸识别领域尤其适用。CNN的多个层次可以逐步提取面部的特征,最终实现精确的身份识别。对于考勤系统而言,CNN可以自动从摄像头捕捉的视频流中检测并识别出员工的面部。 我们在该项目中采用了 RetinaFace 模型,它基于CNN的结构实现高效、精准的

Nn criterions don’t compute the gradient w.r.t. targets error「pytorch」 (debug笔记)

Nn criterions don’t compute the gradient w.r.t. targets error「pytorch」 ##一、 缘由及解决方法 把这个pytorch-ddpg|github搬到jupyter notebook上运行时,出现错误Nn criterions don’t compute the gradient w.r.t. targets error。注:我用

【超级干货】2天速成PyTorch深度学习入门教程,缓解研究生焦虑

3、cnn基础 卷积神经网络 输入层 —输入图片矩阵 输入层一般是 RGB 图像或单通道的灰度图像,图片像素值在[0,255],可以用矩阵表示图片 卷积层 —特征提取 人通过特征进行图像识别,根据左图直的笔画判断X,右图曲的笔画判断圆 卷积操作 激活层 —加强特征 池化层 —压缩数据 全连接层 —进行分类 输出层 —输出分类概率 4、基于LeNet

pytorch torch.nn.functional.one_hot函数介绍

torch.nn.functional.one_hot 是 PyTorch 中用于生成独热编码(one-hot encoding)张量的函数。独热编码是一种常用的编码方式,特别适用于分类任务或对离散的类别标签进行处理。该函数将整数张量的每个元素转换为一个独热向量。 函数签名 torch.nn.functional.one_hot(tensor, num_classes=-1) 参数 t