超平实版Pytorch CNN Conv2d

2024-04-18 08:20
文章标签 cnn pytorch conv2d 平实

本文主要是介绍超平实版Pytorch CNN Conv2d,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

torch.nn.Conv2d

基本参数

in_channels (int)
        输入的通道数量。比如一个2D的图片,由R、G、B三个通道的2D数据叠加。

out_channels (int)
        输出的通道数量。

kernel_size (int or tuple)
        kernel(也就是卷积核,也可以称为filter)的形状

bias (bool, optional)
        是否加上一个可学习的bias。 Default: True.

stride (int or tuple)
        卷积步长。

注:关于为什么kernel_size和stride可以有int、tuple两种表示方式

如果是int,就是对于高那条边、宽那条边应用一样的值。比如如果你的kernel是int,那就是一个正方形的kernel。
如果是tuple,则第1个值应用在高那条边上,第2个值应用在宽那条边上!

 

输入输出的形状

输入形状:
     ( N , C i n , H , W ) (N, C_{in}, H, W) (N,Cin,H,W)
     N N N是batch size
     C i n C_{in} Cin是输出的通道数量
     H H H是2D input的高度
     W W W是2D input的宽度

输出形状:
     ( N , C o u t , H o u t , W o u t ) (N, C_{out}, H_{out}, W_{out}) (N,Cout,Hout,Wout)

 

公式

在这里插入图片描述

公式左边:
         N N N是batch size
         C o u t C_{out} Cout是输出的通道
        (i, j)是索引

        所以这里的 o u t ( N i , C o u t j ) out(N_i, {C_{out}}_j) out(Ni,Coutj)指的就是当前batch中第I个数据的第j个通道的情况。
        你就理解为,现在开始我们抛开batch不谈,且就看一个通道。

 
公式右边:
        五角星理解为一个操作
         k k k是在数数,从0数到 C i n − 1 C_{in-1} Cin1,也就是循环一遍input中的通道数量而已。

 

图例

(图片引用自Apply a 2D Convolution Operation in PyTorch)
在这里插入图片描述

对于每一次kernel的移动:完全对应的位置,数字两两相乘,然后每一对的结果相加,最后加上bias。这里不确定为什么kernel画了三个颜色,我觉得可能只是表示下面计算的顺序是从左到右、从上到下写的。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

参考文档

  1. Pytorch Conv2d文档
  2. Apply a 2D Convolution Operation in PyTorch
  3. PyTorch 2D Convolution

这篇关于超平实版Pytorch CNN Conv2d的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/914251

相关文章

深度学习实战:如何利用CNN实现人脸识别考勤系统

1. 何为CNN及其在人脸识别中的应用 卷积神经网络(CNN)是深度学习中的核心技术之一,擅长处理图像数据。CNN通过卷积层提取图像的局部特征,在人脸识别领域尤其适用。CNN的多个层次可以逐步提取面部的特征,最终实现精确的身份识别。对于考勤系统而言,CNN可以自动从摄像头捕捉的视频流中检测并识别出员工的面部。 我们在该项目中采用了 RetinaFace 模型,它基于CNN的结构实现高效、精准的

Nn criterions don’t compute the gradient w.r.t. targets error「pytorch」 (debug笔记)

Nn criterions don’t compute the gradient w.r.t. targets error「pytorch」 ##一、 缘由及解决方法 把这个pytorch-ddpg|github搬到jupyter notebook上运行时,出现错误Nn criterions don’t compute the gradient w.r.t. targets error。注:我用

【超级干货】2天速成PyTorch深度学习入门教程,缓解研究生焦虑

3、cnn基础 卷积神经网络 输入层 —输入图片矩阵 输入层一般是 RGB 图像或单通道的灰度图像,图片像素值在[0,255],可以用矩阵表示图片 卷积层 —特征提取 人通过特征进行图像识别,根据左图直的笔画判断X,右图曲的笔画判断圆 卷积操作 激活层 —加强特征 池化层 —压缩数据 全连接层 —进行分类 输出层 —输出分类概率 4、基于LeNet

pytorch torch.nn.functional.one_hot函数介绍

torch.nn.functional.one_hot 是 PyTorch 中用于生成独热编码(one-hot encoding)张量的函数。独热编码是一种常用的编码方式,特别适用于分类任务或对离散的类别标签进行处理。该函数将整数张量的每个元素转换为一个独热向量。 函数签名 torch.nn.functional.one_hot(tensor, num_classes=-1) 参数 t

pytorch计算网络参数量和Flops

from torchsummary import summarysummary(net, input_size=(3, 256, 256), batch_size=-1) 输出的参数是除以一百万(/1000000)M, from fvcore.nn import FlopCountAnalysisinputs = torch.randn(1, 3, 256, 256).cuda()fl

如何将卷积神经网络(CNN)应用于医学图像分析:从分类到分割和检测的实用指南

引言 在现代医疗领域,医学图像已经成为疾病诊断和治疗规划的重要工具。医学图像的类型繁多,包括但不限于X射线、CT(计算机断层扫描)、MRI(磁共振成像)和超声图像。这些图像提供了对身体内部结构的详细视图,有助于医生在进行准确诊断和制定个性化治疗方案时获取关键的信息。 1. 医学图像分析的挑战 医学图像分析面临诸多挑战,其中包括: 图像数据的复杂性:医学图像通常具有高维度和复杂的结构

CNN-LSTM模型中应用贝叶斯推断进行时间序列预测

这篇论文的标题是《在混合CNN-LSTM模型中应用贝叶斯推断进行时间序列预测》,作者是Thi-Lich Nghiem, Viet-Duc Le, Thi-Lan Le, Pierre Maréchal, Daniel Delahaye, Andrija Vidosavljevic。论文发表在2022年10月于越南富国岛举行的国际多媒体分析与模式识别会议(MAPR)上。 摘要部分提到,卷积

Python(TensorFlow和PyTorch)两种显微镜成像重建算法模型(显微镜学)

🎯要点 🎯受激发射损耗显微镜算法模型:🖊恢复嘈杂二维和三维图像 | 🖊模型架构:恢复上下文信息和超分辨率图像 | 🖊使用嘈杂和高信噪比的图像训练模型 | 🖊准备半合成训练集 | 🖊优化沙邦尼尔损失和边缘损失 | 🖊使用峰值信噪比、归一化均方误差和多尺度结构相似性指数量化结果 | 🎯训练荧光显微镜模型和对抗网络图形转换模型 🍪语言内容分比 🍇Python图像归一化

Pytorch环境搭建时的各种问题

1 问题 1.一直soving environment,跳不出去。网络解决方案有:配置清华源,更新conda等,没起作用。2.下载完后,有3个要done的东西,最后那个exe开头的(可能吧),总是报错。网络解决方案有:用管理员权限打开prompt等,没起作用。3.有时候配置完源,安装包的时候显示什么https之类的东西,去c盘的用户那个文件夹里找到".condarc"文件把里面的网址都改成htt

【tensorflow CNN】构建cnn网络,识别mnist手写数字识别

#coding:utf8"""构建cnn网络,识别mnistinput conv1 padding max_pool([2,2],strides=[2,2]) conv2 x[-1,28,28,1] 卷积 [5,5,1,32] -> [-1,24,24,32]->[-1,28,