李沐45_SSD实现——自学笔记

2024-04-18 08:04
文章标签 自学 实现 笔记 45 李沐 ssd

本文主要是介绍李沐45_SSD实现——自学笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

主体思路:
1.生成一堆锚框
2.根据真实标签为每个锚框打标(类别、偏移、mask)
3.模型为每个锚框做一个预测(类别、偏移)
4.计算上述二者的差异损失,以更新模型weights

先读取一张图像。 它的高度和宽度分别为561和728像素。

%matplotlib inline
import torch
from d2l import torch as d2limg = d2l.plt.imread('catdog.jpg')
h, w = img.shape[:2]
h, w
(561, 728)

display_anchors函数定义如下。 我们在特征图(fmap)上生成锚框(anchors),每个单位(像素)作为锚框的中心。 由于锚框中的(x,y)轴坐标值(anchors)已经被除以特征图(fmap)的宽度和高度,因此这些值介于0和1之间,表示特征图中锚框的相对位置。

def display_anchors(fmap_w, fmap_h, s):d2l.set_figsize()# 前两个维度上的值不影响输出fmap = torch.zeros((1, 10, fmap_h, fmap_w))anchors = d2l.multibox_prior(fmap, sizes=s, ratios=[1, 2, 0.5])bbox_scale = torch.tensor((w, h, w, h))d2l.show_bboxes(d2l.plt.imshow(img).axes,anchors[0] * bbox_scale)

锚框的尺度设置为0.15,特征图的高度和宽度设置为4。图像上4行和4列的锚框的中心是均匀分布的。

display_anchors(fmap_w=4, fmap_h=4, s=[0.15])

在这里插入图片描述

将特征图的高度和宽度减小一半,然后使用较大的锚框来检测较大的目标。 当尺度设置为0.4时,一些锚框将彼此重叠。

display_anchors(fmap_w=2, fmap_h=2, s=[0.4])

在这里插入图片描述

进一步将特征图的高度和宽度减小一半,然后将锚框的尺度增加到0.8。 此时,锚框的中心即是图像的中心

display_anchors(fmap_w=1, fmap_h=1, s=[0.8])

在这里插入图片描述

SSD的实现 单发多框检测

定义了这样一个类别预测层,通过参数num_anchors和num_classes分别指定了a
和q。 该图层使用填充为1的3X3的卷积层。此卷积层的输入和输出的宽度和高度保持不变。

%matplotlib inline
import torch
import torchvision
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2ldef cls_predictor(num_inputs, num_anchors, num_classes):return nn.Conv2d(num_inputs, num_anchors * (num_classes + 1),kernel_size=3, padding=1)

边界框预测层

每个锚框预测4个偏移量,而不是q+1个类别。

def bbox_predictor(num_inputs, num_anchors):return nn.Conv2d(num_inputs, num_anchors * 4, kernel_size=3, padding=1)

连接多尺度的预测

def forward(x, block):return block(x)Y1 = forward(torch.zeros((2, 8, 20, 20)), cls_predictor(8, 5, 10))
Y2 = forward(torch.zeros((2, 16, 10, 10)), cls_predictor(16, 3, 10))
Y1.shape, Y2.shape
(torch.Size([2, 55, 20, 20]), torch.Size([2, 33, 10, 10]))

将通道维移到最后一维。 因为不同尺度下批量大小仍保持不变,我们可以将预测结果转成二维的(批量大小,高X宽X通道数)的格式,以方便之后在维度1上的连结

def flatten_pred(pred):return torch.flatten(pred.permute(0, 2, 3, 1), start_dim=1)def concat_preds(preds):return torch.cat([flatten_pred(p) for p in preds], dim=1)

尽管Y1和Y2在通道数、高度和宽度方面具有不同的大小,我们仍然可以在同一个小批量的两个不同尺度上连接这两个预测输出。

concat_preds([Y1, Y2]).shape
torch.Size([2, 25300])

高和宽减半块

高和宽减半块down_sample_blk,该模块将输入特征图的高度和宽度减半,可以扩大每个单元在其输出特征图中的感受野。

def down_sample_blk(in_channels, out_channels):blk = []for _ in range(2):blk.append(nn.Conv2d(in_channels, out_channels,kernel_size=3, padding=1))blk.append(nn.BatchNorm2d(out_channels))blk.append(nn.ReLU())in_channels = out_channelsblk.append(nn.MaxPool2d(2))return nn.Sequential(*blk)

在以下示例中,我们构建的高和宽减半块会更改输入通道的数量,并将输入特征图的高度和宽度减半。

forward(torch.zeros((2, 3, 20, 20)), down_sample_blk(3, 10)).shape
torch.Size([2, 10, 10, 10])

基本网络块

基本网络块用于从输入图像中抽取特征,输出特征形状32X32

def base_net():blk = []num_filters = [3, 16, 32, 64]for i in range(len(num_filters) - 1):blk.append(down_sample_blk(num_filters[i], num_filters[i+1]))return nn.Sequential(*blk)forward(torch.zeros((2, 3, 256, 256)), base_net()).shape
torch.Size([2, 64, 32, 32])

完整模型

完整的单发多框检测模型由五个模块组成。每个块生成的特征图既用于生成锚框,又用于预测这些锚框的类别和偏移量。在这五个模块中,第一个是基本网络块,第二个到第四个是高和宽减半块,最后一个模块使用全局最大池将高度和宽度都降到1。

def get_blk(i):if i == 0:blk = base_net()elif i == 1:blk = down_sample_blk(64, 128)elif i == 4:blk = nn.AdaptiveMaxPool2d((1,1))else:blk = down_sample_blk(128, 128)return blk

每个块定义前向传播。与图像分类任务不同,此处的输出包括:CNN特征图Y;在当前尺度下根据Y生成的锚框;预测的这些锚框的类别和偏移量(基于Y)。

def blk_forward(X, blk, size, ratio, cls_predictor, bbox_predictor):Y = blk(X)anchors = d2l.multibox_prior(Y, sizes=size, ratios=ratio)cls_preds = cls_predictor(Y)bbox_preds = bbox_predictor(Y)return (Y, anchors, cls_preds, bbox_preds)
sizes = [[0.2, 0.272], [0.37, 0.447], [0.54, 0.619], [0.71, 0.79],[0.88, 0.961]]
ratios = [[1, 2, 0.5]] * 5
num_anchors = len(sizes[0]) + len(ratios[0]) - 1

完整的模型TinySSD

class TinySSD(nn.Module):def __init__(self, num_classes, **kwargs):super(TinySSD, self).__init__(**kwargs)self.num_classes = num_classesidx_to_in_channels = [64, 128, 128, 128, 128]for i in range(5):# 即赋值语句self.blk_i=get_blk(i)setattr(self, f'blk_{i}', get_blk(i))setattr(self, f'cls_{i}', cls_predictor(idx_to_in_channels[i],num_anchors, num_classes))setattr(self, f'bbox_{i}', bbox_predictor(idx_to_in_channels[i],num_anchors))def forward(self, X):anchors, cls_preds, bbox_preds = [None] * 5, [None] * 5, [None] * 5for i in range(5):# getattr(self,'blk_%d'%i)即访问self.blk_iX, anchors[i], cls_preds[i], bbox_preds[i] = blk_forward(X, getattr(self, f'blk_{i}'), sizes[i], ratios[i],getattr(self, f'cls_{i}'), getattr(self, f'bbox_{i}'))anchors = torch.cat(anchors, dim=1)cls_preds = concat_preds(cls_preds)cls_preds = cls_preds.reshape(cls_preds.shape[0], -1, self.num_classes + 1)bbox_preds = concat_preds(bbox_preds)return anchors, cls_preds, bbox_preds

创建一个模型实例,然后使用它对一个256X256像素的小批量图像X执行前向传播.第一个模块输出特征图的形状为32X32。 回想一下,第二到第四个模块为高和宽减半块,第五个模块为全局汇聚层。 由于以特征图的每个单元为中心有4个锚框生成,因此在所有五个尺度下,每个图像总共生成5444

net = TinySSD(num_classes=1)
X = torch.zeros((32, 3, 256, 256))
anchors, cls_preds, bbox_preds = net(X)print('output anchors:', anchors.shape)
print('output class preds:', cls_preds.shape)
print('output bbox preds:', bbox_preds.shape)
output anchors: torch.Size([1, 5444, 4])
output class preds: torch.Size([32, 5444, 2])
output bbox preds: torch.Size([32, 21776])

训练模型

读取数据集和初始化

batch_size = 32
train_iter, _ = d2l.load_data_bananas(batch_size)
Downloading ../data/banana-detection.zip from http://d2l-data.s3-accelerate.amazonaws.com/banana-detection.zip...
read 1000 training examples
read 100 validation examples

香蕉检测数据集中,目标的类别数为1。 定义好模型后,我们需要初始化其参数并定义优化算法。

device, net = d2l.try_gpu(), TinySSD(num_classes=1)
trainer = torch.optim.SGD(net.parameters(), lr=0.2, weight_decay=5e-4)

定义损失和平均函数

使用L1范数损失,即预测值和真实值之差的绝对值。 掩码变量bbox_masks令负类锚框和填充锚框不参与损失的计算。 最后,我们将锚框类别和偏移量的损失相加,以获得模型的最终损失函数。

cls_loss = nn.CrossEntropyLoss(reduction='none')
bbox_loss = nn.L1Loss(reduction='none')def calc_loss(cls_preds, cls_labels, bbox_preds, bbox_labels, bbox_masks):batch_size, num_classes = cls_preds.shape[0], cls_preds.shape[2]cls = cls_loss(cls_preds.reshape(-1, num_classes),cls_labels.reshape(-1)).reshape(batch_size, -1).mean(dim=1)bbox = bbox_loss(bbox_preds * bbox_masks,bbox_labels * bbox_masks).mean(dim=1)return cls + bbox

沿用准确率平均结果,平均绝对误差来评价预测结果

def cls_eval(cls_preds, cls_labels):# 由于类别预测结果放在最后一维,argmax需要指定最后一维。return float((cls_preds.argmax(dim=-1).type(cls_labels.dtype) == cls_labels).sum())def bbox_eval(bbox_preds, bbox_labels, bbox_masks):return float((torch.abs((bbox_labels - bbox_preds) * bbox_masks)).sum())

训练模型

需要在模型的前向传播过程中生成多尺度锚框(anchors),并预测其类别(cls_preds)和偏移量(bbox_preds)。 然后,我们根据标签信息Y为生成的锚框标记类别(cls_labels)和偏移量(bbox_labels)。 最后,我们根据类别和偏移量的预测和标注值计算损失函数。

num_epochs, timer = 20, d2l.Timer()
animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],legend=['class error', 'bbox mae'])
net = net.to(device)
for epoch in range(num_epochs):# 训练精确度的和,训练精确度的和中的示例数# 绝对误差的和,绝对误差的和中的示例数metric = d2l.Accumulator(4)net.train()for features, target in train_iter:timer.start()trainer.zero_grad()X, Y = features.to(device), target.to(device)# 生成多尺度的锚框,为每个锚框预测类别和偏移量anchors, cls_preds, bbox_preds = net(X)# 为每个锚框标注类别和偏移量bbox_labels, bbox_masks, cls_labels = d2l.multibox_target(anchors, Y)# 根据类别和偏移量的预测和标注值计算损失函数l = calc_loss(cls_preds, cls_labels, bbox_preds, bbox_labels,bbox_masks)l.mean().backward()trainer.step()metric.add(cls_eval(cls_preds, cls_labels), cls_labels.numel(),bbox_eval(bbox_preds, bbox_labels, bbox_masks),bbox_labels.numel())cls_err, bbox_mae = 1 - metric[0] / metric[1], metric[2] / metric[3]animator.add(epoch + 1, (cls_err, bbox_mae))
print(f'class err {cls_err:.2e}, bbox mae {bbox_mae:.2e}')
print(f'{len(train_iter.dataset) / timer.stop():.1f} examples/sec on 'f'{str(device)}')
class err 3.32e-03, bbox mae 3.24e-03
4187.2 examples/sec on cuda:0

在这里插入图片描述

预测目标

将图像中感兴趣的目标检测出来,读取并调整测试图像的大小,然后将其转成卷积层需要的四维格式。

X = torchvision.io.read_image('banana.jpg').unsqueeze(0).float()
img = X.squeeze(0).permute(1, 2, 0).long()

使用下面的multibox_detection函数,我们可以根据锚框及其预测偏移量得到预测边界框。然后,通过非极大值抑制来移除相似的预测边界框

def predict(X):net.eval()anchors, cls_preds, bbox_preds = net(X.to(device))cls_probs = F.softmax(cls_preds, dim=2).permute(0, 2, 1)output = d2l.multibox_detection(cls_probs, bbox_preds, anchors)idx = [i for i, row in enumerate(output[0]) if row[0] != -1]return output[0, idx]output = predict(X)

筛选所有置信度不低于0.9的边界框,做为最终输出。

def display(img, output, threshold):d2l.set_figsize((5, 5))fig = d2l.plt.imshow(img)for row in output:score = float(row[1])if score < threshold:continueh, w = img.shape[0:2]bbox = [row[2:6] * torch.tensor((w, h, w, h), device=row.device)]d2l.show_bboxes(fig.axes, bbox, '%.2f' % score, 'w')display(img, output.cpu(), threshold=0.9)

在这里插入图片描述

这篇关于李沐45_SSD实现——自学笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/914210

相关文章

C#提取PDF表单数据的实现流程

《C#提取PDF表单数据的实现流程》PDF表单是一种常见的数据收集工具,广泛应用于调查问卷、业务合同等场景,凭借出色的跨平台兼容性和标准化特点,PDF表单在各行各业中得到了广泛应用,本文将探讨如何使用... 目录引言使用工具C# 提取多个PDF表单域的数据C# 提取特定PDF表单域的数据引言PDF表单是一

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

PyCharm接入DeepSeek实现AI编程的操作流程

《PyCharm接入DeepSeek实现AI编程的操作流程》DeepSeek是一家专注于人工智能技术研发的公司,致力于开发高性能、低成本的AI模型,接下来,我们把DeepSeek接入到PyCharm中... 目录引言效果演示创建API key在PyCharm中下载Continue插件配置Continue引言

MySQL分表自动化创建的实现方案

《MySQL分表自动化创建的实现方案》在数据库应用场景中,随着数据量的不断增长,单表存储数据可能会面临性能瓶颈,例如查询、插入、更新等操作的效率会逐渐降低,分表是一种有效的优化策略,它将数据分散存储在... 目录一、项目目的二、实现过程(一)mysql 事件调度器结合存储过程方式1. 开启事件调度器2. 创

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

SQL Server使用SELECT INTO实现表备份的代码示例

《SQLServer使用SELECTINTO实现表备份的代码示例》在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误,在SQLServer中,可以使用SELECTINT... 在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误。在 SQL Server 中,可以使用 SE

基于Go语言实现一个压测工具

《基于Go语言实现一个压测工具》这篇文章主要为大家详细介绍了基于Go语言实现一个简单的压测工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录整体架构通用数据处理模块Http请求响应数据处理Curl参数解析处理客户端模块Http客户端处理Grpc客户端处理Websocket客户端

Java CompletableFuture如何实现超时功能

《JavaCompletableFuture如何实现超时功能》:本文主要介绍实现超时功能的基本思路以及CompletableFuture(之后简称CF)是如何通过代码实现超时功能的,需要的... 目录基本思路CompletableFuture 的实现1. 基本实现流程2. 静态条件分析3. 内存泄露 bug

C#实现添加/替换/提取或删除Excel中的图片

《C#实现添加/替换/提取或删除Excel中的图片》在Excel中插入与数据相关的图片,能将关键数据或信息以更直观的方式呈现出来,使文档更加美观,下面我们来看看如何在C#中实现添加/替换/提取或删除E... 在Excandroidel中插入与数据相关的图片,能将关键数据或信息以更直观的方式呈现出来,使文档更

C#实现系统信息监控与获取功能

《C#实现系统信息监控与获取功能》在C#开发的众多应用场景中,获取系统信息以及监控用户操作有着广泛的用途,比如在系统性能优化工具中,需要实时读取CPU、GPU资源信息,本文将详细介绍如何使用C#来实现... 目录前言一、C# 监控键盘1. 原理与实现思路2. 代码实现二、读取 CPU、GPU 资源信息1.