POJ 3264(ST实现RMQ)

2024-04-18 07:08
文章标签 实现 poj st rmq 3264

本文主要是介绍POJ 3264(ST实现RMQ),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目链接:点击打开链接


题目大意:给一个n和q,n代表有n个数,q代表q次查询。每次查询输入两个数字a,b,问你从第a个数字到第b个数字间的最大值减去最小值的值是多少。


题目思路:如果直接搜,查一次就O(n),铁定爆炸。这里线段树和ST算法都可以,线段树好像挺麻烦先学一波ST解法一会儿去学线段树,美滋滋。不过像这种单纯的求区间最值的问题,还是用ST比较好,因为ST算法预处理nlogn,查询都是O(1),非常强悍,线段树构树nlogn,查询logn,而且有很大的常数,所以本题用ST更好一些。本题代码参考kuangbin大神本题代码,非常感谢!

ST算法:

ST算法是求解RMQ问题的一种经典算法,RMQ问题就是求一个区间内的最值的问题。上面已经简单的说明了ST算法的优越性,nlogn预处理后就可以O1查询。这里讲一下他是怎么实现的。

ST算法的预处理用到了DP的思想。这里以求区间最小值为例子,mn[i][j]表示从第i个数字开始2^j个数字中的最小值大小。其动态转移方程为mn[i][j] = min(mn[i][j - 1], mn[i + (1 << j - 1)][j - 1])。介绍一下,由上,mn[i][j]是从第i个数字开始,2^j个数字钟的最小值,我们把它分为两部分,比如mn[1][2],就是从1开始2^2=4个数字,1,2,3,4中的最小值,由于j不断变大,所以此时两个数字的情况我们已经知道了,也就是求mn[1][1],mn[3][1]我们已经了解了,我们知道1 2中的最小值,3 4中的最小值,俩比一下就知道了1 2 3 4中的最小值,是不是很棒呢..

接下来说ST算法的查询,其实也是把它分成两半,要是不能正好分成两半咋办呢..没事啊,有重叠部分也不会影响结果的呀..所以比如我们求1~6的区间最小,我们可以吧1~4(mn[1][2])和3~6(mn[3][2])拿出来就可以算出来了,非常强势。怎么分呢?两个数字之间一共有y-x+1个数字,然后+1取对数log2(y-x+1)就可以啦,这样2^k就肯定可以满足把这俩分成两半后没有数字落下,很棒


以下是代码:

#include<iostream>
#include<cstdio>
#include<math.h>
using namespace std;
#define MAXN 50005
int n,q,dpMax[MAXN][20],dpMin[MAXN][20],a[MAXN];
void makeMax(){for(int i=1;i<=n;i++){dpMax[i][0]=a[i];}for(int j=1;(1<<j)<=n;j++){for(int i=1;i+(1<<j)-1<=n;i++){dpMax[i][j]=max(dpMax[i][j-1],dpMax[i+(1<<(j-1))][j-1]);}}
}
int getMax(int x,int y){int k=(int)(log(y-x+1.0)/log(2.0));return max(dpMax[x][k],dpMax[y-(1<<k)+1][k]);
}
void makeMin(){for(int i=1;i<=n;i++){dpMin[i][0]=a[i];}for(int j=1;(1<<j)<=n;j++){for(int i=1;i+(1<<j)-1<=n;i++){dpMin[i][j]=min(dpMin[i][j-1],dpMin[i+(1<<(j-1))][j-1]);}}
}
int getMin(int x,int y){int k=(int)(log(y-x+1.0)/log(2.0));return min(dpMin[x][k],dpMin[y-(1<<k)+1][k]);
}
int main(){while(~scanf("%d%d",&n,&q)){int x,y;for(int i=1;i<=n;i++){scanf("%d",&a[i]);}makeMax();makeMin();for(int i=0;i<q;i++){scanf("%d%d",&x,&y);printf("%d\n",getMax(x,y)-getMin(x,y));}}return 0;
}

这篇关于POJ 3264(ST实现RMQ)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/914094

相关文章

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

Python pyinstaller实现图形化打包工具

《Pythonpyinstaller实现图形化打包工具》:本文主要介绍一个使用PythonPYQT5制作的关于pyinstaller打包工具,代替传统的cmd黑窗口模式打包页面,实现更快捷方便的... 目录1.简介2.运行效果3.相关源码1.简介一个使用python PYQT5制作的关于pyinstall

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

python实现自动登录12306自动抢票功能

《python实现自动登录12306自动抢票功能》随着互联网技术的发展,越来越多的人选择通过网络平台购票,特别是在中国,12306作为官方火车票预订平台,承担了巨大的访问量,对于热门线路或者节假日出行... 目录一、遇到的问题?二、改进三、进阶–展望总结一、遇到的问题?1.url-正确的表头:就是首先ur

C#实现文件读写到SQLite数据库

《C#实现文件读写到SQLite数据库》这篇文章主要为大家详细介绍了使用C#将文件读写到SQLite数据库的几种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以参考一下... 目录1. 使用 BLOB 存储文件2. 存储文件路径3. 分块存储文件《文件读写到SQLite数据库China编程的方法》博客中,介绍了文

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

JAVA利用顺序表实现“杨辉三角”的思路及代码示例

《JAVA利用顺序表实现“杨辉三角”的思路及代码示例》杨辉三角形是中国古代数学的杰出研究成果之一,是我国北宋数学家贾宪于1050年首先发现并使用的,:本文主要介绍JAVA利用顺序表实现杨辉三角的思... 目录一:“杨辉三角”题目链接二:题解代码:三:题解思路:总结一:“杨辉三角”题目链接题目链接:点击这里

基于Python实现PDF动画翻页效果的阅读器

《基于Python实现PDF动画翻页效果的阅读器》在这篇博客中,我们将深入分析一个基于wxPython实现的PDF阅读器程序,该程序支持加载PDF文件并显示页面内容,同时支持页面切换动画效果,文中有详... 目录全部代码代码结构初始化 UI 界面加载 PDF 文件显示 PDF 页面页面切换动画运行效果总结主

SpringBoot实现基于URL和IP的访问频率限制

《SpringBoot实现基于URL和IP的访问频率限制》在现代Web应用中,接口被恶意刷新或暴力请求是一种常见的攻击手段,为了保护系统资源,需要对接口的访问频率进行限制,下面我们就来看看如何使用... 目录1. 引言2. 项目依赖3. 配置 Redis4. 创建拦截器5. 注册拦截器6. 创建控制器8.