基于CNN的SEEG/EEG脑电数据处理分析

2024-04-17 13:58

本文主要是介绍基于CNN的SEEG/EEG脑电数据处理分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

自从AlexNet 神经网络问世以来,Convolutional Neural Network(CNN)是深度学习领域璀璨的明星之一。特别是Computer Vision(CV)领域。基本上CV领域的大多数的任务都是基于CNN神经网络。 当然最近又兴起了GCN。 但是从数学上讲GCN是CNN的一种推广。这个暂时不进行详细的讨论。事实上不仅仅在处理图片这种数据需要用到CNN神经网络。更一般的来说涉及到空间数据处理时使用CNN都是一个不错的选择。CNN更能够捕捉到空间之间相互关联的信息,在图像上表示的是不同坐标像素之间的关系。更加抽象一点的是特征之间的关联。因此CNN在图像识别等领域获得了巨大的成功。

脑电图、脑波图是透过医学仪器脑电图描记仪,将人体脑部自身产生的微弱生物电于头皮处收集,并放大记录而得到的曲线图。脑电图用于辅助诊断脑部相关疾病,但因为其易受到干扰,且包含大量噪声。因此对EEG数据的处理在EEG数据分析中占有重要地位。脑电数据处理的常见方法有时频分析、频域分析、高阶谱分析、非线性分析等方法。其中对于对于人体脑电有以下的划分,以及各个不同频率脑电之间的差异:

很多人对于脑电数据研究更加的侧重于时序的研究, 这个也仅仅是一个研究方面。我目前主要的研究对象是患有睡眠癫痫的病人,数据是SEEG数据。

立体脑电图(SEEG)是通过深度电极(手术植入脑组织的电极)记录脑电图信号。它可用于对药物治疗无反应的癫痫患者,以及可能接受脑部手术以控制癫痫发作的患者。它也可以用于研究,从大脑的特定区域收集神经数据,例如从听觉皮层收集神经数据,用于听觉刺激重建。这项技术在20世纪下半叶被法国巴黎圣安医院引入癫痫患者的诊断工作中。脑内电极被放置在所需的大脑区域内,以记录癫痫发作期间的电活动,从而有助于精确地定义“癫痫发生区”的边界,即产生癫痫发作的大脑区域,该区域应最终通过手术切除以实现免于癫痫发作。该手术的潜在风险(不到1%)包括脑出血和感染,这可能导致永久性神经损伤或死亡。因此,立体脑电图被保留给选定的特别复杂的癫痫病例。

利用SEEG的数据可以研究大脑的各个功能区之间的关联程度,即癫痫对于不同的功能区的影响程度。其中SEEG数据的信号采集是由众多的侵入式的电击构成,其深入到了大脑内部,数量大概有100-200个。医生会根据不同区域发生异常放电的概率大小来决定植入电极多少。对于异常放电的区域称为癫痫的病灶。我们要先对数据进行预处理,使得其能够被神经网络处理。首先这里的每一个电极都是有物理坐标的。我们可以根据坐标来获取一个一维序列,这个序列满足以下条件:

  1. 序列的任意两个相邻的电极一定是物理位置最接近的。
  2. 序列的灰质和白质分开计算,最后要做一个拼接。之所以分开是考虑到癫痫有其经常发作的大脑区域。

获取这样序列后,我们可以对于每一个电极取一t的时间窗口。这样我们可以构成一个矩阵,这个矩阵纵坐标是电极序列,横坐标是时间。我们就可以使用CNN来进行训练使用监督学习,我们的任务可以分为两个状态:癫痫发作前的睡眠, 正常睡眠。 我们选择睡眠是因为睡眠的时候脑电数据比较干净,其他干扰较少。实验结果如下:

最后我们的实验取得了97.7%的成绩。我们的训练集和测试集的划分是按照全部的7:3来划分。因此给出任意的一个睡眠脑电片段,按照我们方法处理都有了比较高的识别率。我的代码已经开源到了GitHub上,如果有人感兴趣可以和我作进一步交流。

等相关工作发表后我会开源我的源代码,我的Github地址是:github地址, 多谢大家的关注。

这篇关于基于CNN的SEEG/EEG脑电数据处理分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/911986

相关文章

MyBatis-Plus中Service接口的lambdaUpdate用法及实例分析

《MyBatis-Plus中Service接口的lambdaUpdate用法及实例分析》本文将详细讲解MyBatis-Plus中的lambdaUpdate用法,并提供丰富的案例来帮助读者更好地理解和应... 目录深入探索MyBATis-Plus中Service接口的lambdaUpdate用法及示例案例背景

MyBatis-Plus中静态工具Db的多种用法及实例分析

《MyBatis-Plus中静态工具Db的多种用法及实例分析》本文将详细讲解MyBatis-Plus中静态工具Db的各种用法,并结合具体案例进行演示和说明,具有很好的参考价值,希望对大家有所帮助,如有... 目录MyBATis-Plus中静态工具Db的多种用法及实例案例背景使用静态工具Db进行数据库操作插入

Go使用pprof进行CPU,内存和阻塞情况分析

《Go使用pprof进行CPU,内存和阻塞情况分析》Go语言提供了强大的pprof工具,用于分析CPU、内存、Goroutine阻塞等性能问题,帮助开发者优化程序,提高运行效率,下面我们就来深入了解下... 目录1. pprof 介绍2. 快速上手:启用 pprof3. CPU Profiling:分析 C

MySQL表锁、页面锁和行锁的作用及其优缺点对比分析

《MySQL表锁、页面锁和行锁的作用及其优缺点对比分析》MySQL中的表锁、页面锁和行锁各有特点,适用于不同的场景,表锁锁定整个表,适用于批量操作和MyISAM存储引擎,页面锁锁定数据页,适用于旧版本... 目录1. 表锁(Table Lock)2. 页面锁(Page Lock)3. 行锁(Row Lock

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Python数据处理之导入导出Excel数据方式

《Python数据处理之导入导出Excel数据方式》Python是Excel数据处理的绝佳工具,通过Pandas和Openpyxl等库可以实现数据的导入、导出和自动化处理,从基础的数据读取和清洗到复杂... 目录python导入导出Excel数据开启数据之旅:为什么Python是Excel数据处理的最佳拍档