算法练习第17天|104.二叉树的最大深度 、559.N叉树的最大深度

2024-04-17 05:04

本文主要是介绍算法练习第17天|104.二叉树的最大深度 、559.N叉树的最大深度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 104.二叉树的最大深度

104. 二叉树的最大深度 - 力扣(LeetCode)icon-default.png?t=N7T8https://leetcode.cn/problems/maximum-depth-of-binary-tree/description/

什么是二叉树的深度和高度?

二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。最大深度==二叉树的层数==根节点的深度==根节点的高度==第二层节点的最大高度+1。

二叉树某个节点的深度:指从根节点到该节点的最长简单路径边的条数。

二叉树某个节点的高度:指从该节点到叶子节点的最长简单路径边的条数。

题目描述:

给定一个二叉树 root ,返回其最大深度。

二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。

示例 1:

输入:root = [3,9,20,null,null,15,7]
输出:3

示例 2:

输入:root = [1,null,2]
输出:2

思路分析:

本题可以使用前序(中左右),也可以使用后序遍历(左右中),使用前序求的就是深度,使用后序求的是高度。

后序递归解法

下面先尝试使用后序递归实现最大深度的求法。

递归第一步:确认递归函数的参数和返回值。题目已经给出,参数为二叉树的根节点指针,返回值为最大深度,所以返回值类型为int。

int maxDepth(TreeNode* root){}

递归第二步:确认终止条件。那就是如果传入的root为nullptr,则返回0。即递归结束的条件为空树,即没有子树可以继续下一层的递归。

if(root == nullptr) return 0;

递归第三步:确认单层递归逻辑。按照该思路,在单层递归时应该分别统计当前root(可以时根节点,也可以是子树的根节点)的左右子树的最大高度,然后取两者中的最大值。则当前root的深度为两者中的最大值+1,即:

//左子树的高度
int left = maxDepth(root->left);
//右子树的高度
int right = maxDepth(root->right);int depth = max(left, right) + 1;  //中
return depth;

后序整体代码如下:

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode() : val(0), left(nullptr), right(nullptr) {}*     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}*     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public://采用后序递归遍历int maxDepth(TreeNode* root) {if(root == nullptr) return 0;//左子树的高度int left = maxDepth(root->left);  //左//右子树的高度int right = maxDepth(root->right);  //右int depth = max(left, right) + 1;  //中return depth;}
};

层序遍历解法

由于二叉树的最大深度就是二叉树的层数,所以使用前文所讲的层序遍历来计算深度(层数)。具体代码如下:

class Solution {
public://采用层序遍历int maxDepth(TreeNode* root) {if(root == nullptr) return 0;queue<TreeNode*> que;que.push(root);int depth = 0;while(!que.empty()){            int size= que.size(); //当前层存在,深度++++depth;   //遍历当前层各节点        for(int i=0; i<size; i++){//去每一层的各节点必须放在for循环里TreeNode *node = que.front();que.pop();if(node->left)  que.push(node->left);if(node->right)  que.push(node->right);}}return depth;}
};

前序递归解法

最后介绍一下前序解法,我理解来比较困难,大家可以看一下:

class solution {
public:int result;void getdepth(TreeNode* node, int depth) {result = depth > result ? depth : result; // 中if (node->left == NULL && node->right == NULL) return ;if (node->left) { // 左depth++;    // 深度+1getdepth(node->left, depth);depth--;    // 回溯,深度-1}if (node->right) { // 右depth++;    // 深度+1getdepth(node->right, depth);depth--;    // 回溯,深度-1}return ;}int maxDepth(TreeNode* root) {result = 0;if (root == NULL) return result;getdepth(root, 1);return result;}
};

559.N叉树的最大深度

559. N 叉树的最大深度 - 力扣(LeetCode)icon-default.png?t=N7T8https://leetcode.cn/problems/maximum-depth-of-n-ary-tree/description/

题目描述:

给定一个 N 叉树,找到其最大深度。

最大深度是指从根节点到最远叶子节点的最长路径上的节点总数。

N 叉树输入按层序遍历序列化表示,每组子节点由空值分隔(请参见示例)。

示例 1:

输入:root = [1,null,3,2,4,null,5,6]
输出:3

示例 2:

输入:root = [1,null,2,3,4,5,null,null,6,7,null,8,null,9,10,null,null,11,null,12,null,13,null,null,14]
输出:5

有了前面二叉树的解法,下面直接给出后序递归解法:

后序递归解法

/*
// Definition for a Node.
class Node {
public:int val;vector<Node*> children;Node() {}Node(int _val) {val = _val;}Node(int _val, vector<Node*> _children) {val = _val;children = _children;}
};
*/class Solution {
public:int maxDepth(Node* root) {if(root == nullptr) return 0;int depth = 0;for(int i = 0; i < root->children.size(); ++i){int children_i_depth = maxDepth(root->children[i]);depth = max(children_i_depth, depth) ;  //注意,这里只找子树的最大高度}return depth+1;  //深度是在子树最大高度的基础上加1}
};

层序遍历解法:

class Solution {
public:int maxDepth(Node* root) {if(root == nullptr) return 0;int depth = 0;queue<Node *> que;que.push(root);while(!que.empty()){int size = que.size();++depth;for(int i = 0; i<size; i++){Node * node = que.front();que.pop();for(int j = 0;j < node->children.size();j++){if(node->children[j] != nullptr)que.push(node->children[j]);}}            }return depth;}
};

这篇关于算法练习第17天|104.二叉树的最大深度 、559.N叉树的最大深度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/910845

相关文章

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

如何提高Redis服务器的最大打开文件数限制

《如何提高Redis服务器的最大打开文件数限制》文章讨论了如何提高Redis服务器的最大打开文件数限制,以支持高并发服务,本文给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录如何提高Redis服务器的最大打开文件数限制问题诊断解决步骤1. 修改系统级别的限制2. 为Redis进程特别设置限制

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个