pytorch实现自己的深度神经网络(公共数据集)

2024-04-17 02:44

本文主要是介绍pytorch实现自己的深度神经网络(公共数据集),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、训练文件——train.py

  注意:在运行此代码之前,需要配置好pytorch-GPU版本的环境,具体再次不谈。

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms# 检查GPU是否可用
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("Device:", device)# 数据预处理的转换
transform = transforms.Compose([transforms.Resize((256, 256)),transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])# 加载CIFAR-10训练数据集
train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True,download=True, transform=transform)# 创建数据加载器
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=8,shuffle=True, num_workers=0)# 定义神经网络模型
class CNN(nn.Module):def __init__(self):super(CNN, self).__init__()self.conv1 = nn.Conv2d(3, 32, 3, padding=1)self.conv2 = nn.Conv2d(32, 64, 3, padding=1)self.conv3 = nn.Conv2d(64, 128, 3, padding=1)self.pool = nn.MaxPool2d(2, 2)self.fc1 = nn.Linear(128 * 32 * 32, 512)self.fc2 = nn.Linear(512, 10)def forward(self, x):x = self.pool(torch.relu(self.conv1(x)))x = self.pool(torch.relu(self.conv2(x)))x = self.pool(torch.relu(self.conv3(x)))x = x.view(-1, 128 * 32 * 32)x = torch.relu(self.fc1(x))x = self.fc2(x)return x# 实例化模型,并将其移动到可用设备上
model = CNN().to(device)# 定义损失函数
criterion = nn.CrossEntropyLoss()# 定义优化器
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)if __name__ == '__main__':# 训练神经网络for epoch in range(5):running_loss = 0.0for i, data in enumerate(train_loader, 0):inputs, labels = data[0].to(device), data[1].to(device)# 梯度清零optimizer.zero_grad()# 正向传播outputs = model(inputs)loss = criterion(outputs, labels)# 反向传播 + 优化loss.backward()optimizer.step()# 打印统计信息running_loss += loss.item()if i % 200 == 199:print('[%d, %5d] loss: %.3f' %(epoch + 1, i + 1, running_loss / 200))running_loss = 0.0print('Finished Training')# 保存模型至文件torch.save(model.state_dict(), 'cifar10_cnn_model.pth')

二、测试文件——val.py

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
import cv2# 检查GPU是否可用
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("Device:", device)# 数据预处理的转换
transform = transforms.Compose([transforms.Resize((256, 256)),transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])# 加载CIFAR-10测试数据集
test_dataset = torchvision.datasets.CIFAR10(root='./data', train=False,download=True, transform=transform)# 创建测试数据加载器
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=8,shuffle=False, num_workers=0)# 加载模型并将其移动到可用设备上
class CNN(nn.Module):def __init__(self):super(CNN, self).__init__()self.conv1 = nn.Conv2d(3, 32, 3, padding=1)self.conv2 = nn.Conv2d(32, 64, 3, padding=1)self.conv3 = nn.Conv2d(64, 128, 3, padding=1)self.pool = nn.MaxPool2d(2, 2)self.fc1 = nn.Linear(128 * 32 * 32, 512)self.fc2 = nn.Linear(512, 10)def forward(self, x):x = self.pool(torch.relu(self.conv1(x)))x = self.pool(torch.relu(self.conv2(x)))x = self.pool(torch.relu(self.conv3(x)))x = x.view(-1, 128 * 32 * 32)x = torch.relu(self.fc1(x))x = self.fc2(x)return x
# 显示函数
def imshow(img):img = img / 2 + 0.5npimg = img.numpy()# 坐标转换plt.imshow(np.transpose(npimg, (1, 2, 0)))plt.show()model = CNN().to(device)
model.load_state_dict(torch.load('cifar10_cnn_model.pth'))
model.eval()if __name__ == '__main__':# 在测试集上测试模型correct = 0total = 0with torch.no_grad():for data in test_loader:images, labels = data[0].to(device), data[1].to(device)outputs = model(images)# 预测值的最大值以及最大值的类别索引_, predicted = torch.max(outputs, 1)total += labels.size(0)correct += (predicted == labels).sum().item()print('Accuracy on the test images: %d %%' % (100 * correct / total))# 显示测试集中的一些图片及其预测结果# 生成一个迭代器,从数据加载器中取出数据dataiter = iter(test_loader)# 从迭代器中获取下一个批次的数据images, labels = dataiter.next()# 将获取到的批次数据移动到device上,在这里也就是GPU上images, labels = images.to(device), labels.to(device)dip_flag = Falseif dip_flag == True:# -------------------------------------------# 可以选择 使用opencv显示# -------------------------------------------np_images = images.cpu().numpy()# 循环遍历并显示所有测试集图片for i in range(len(np_images)):# 从归一化中还原图像数据np_image = np.transpose(np_images[i], (1, 2, 0))   # 从CHW转换为HWCnp_image = np_image * 0.5 + 0.5# 将图像数据从float类型转换为unit8类型np_image = (np_image * 255).astype(np.uint8)# 使用opencv显示图像cv2.imshow("Image {}".format(i+1), np_image)cv2.waitKey(0)# 等待用户按下任意键继续显示下一张图像cv2.destroyAllWindows()imshow(torchvision.utils.make_grid(images.cpu()))print('GroundTruth: ', ' '.join('%5s' % test_dataset.classes[labels[j]] for j in range(8)))outputs = model(images)_, predicted = torch.max(outputs, 1)print('Predicted: ', ' '.join('%5s' % test_dataset.classes[predicted[j]]for j in range(8)))


直接运行即可,亲测可以运行

这篇关于pytorch实现自己的深度神经网络(公共数据集)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/910589

相关文章

AJAX请求上传下载进度监控实现方式

《AJAX请求上传下载进度监控实现方式》在日常Web开发中,AJAX(AsynchronousJavaScriptandXML)被广泛用于异步请求数据,而无需刷新整个页面,:本文主要介绍AJAX请... 目录1. 前言2. 基于XMLHttpRequest的进度监控2.1 基础版文件上传监控2.2 增强版多

Redis分片集群的实现

《Redis分片集群的实现》Redis分片集群是一种将Redis数据库分散到多个节点上的方式,以提供更高的性能和可伸缩性,本文主要介绍了Redis分片集群的实现,具有一定的参考价值,感兴趣的可以了解一... 目录1. Redis Cluster的核心概念哈希槽(Hash Slots)主从复制与故障转移2.

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

使用Python实现一键隐藏屏幕并锁定输入

《使用Python实现一键隐藏屏幕并锁定输入》本文主要介绍了使用Python编写一个一键隐藏屏幕并锁定输入的黑科技程序,能够在指定热键触发后立即遮挡屏幕,并禁止一切键盘鼠标输入,这样就再也不用担心自己... 目录1. 概述2. 功能亮点3.代码实现4.使用方法5. 展示效果6. 代码优化与拓展7. 总结1.

Mybatis 传参与排序模糊查询功能实现

《Mybatis传参与排序模糊查询功能实现》:本文主要介绍Mybatis传参与排序模糊查询功能实现,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、#{ }和${ }传参的区别二、排序三、like查询四、数据库连接池五、mysql 开发企业规范一、#{ }和${ }传参的

Docker镜像修改hosts及dockerfile修改hosts文件的实现方式

《Docker镜像修改hosts及dockerfile修改hosts文件的实现方式》:本文主要介绍Docker镜像修改hosts及dockerfile修改hosts文件的实现方式,具有很好的参考价... 目录docker镜像修改hosts及dockerfile修改hosts文件准备 dockerfile 文

基于SpringBoot+Mybatis实现Mysql分表

《基于SpringBoot+Mybatis实现Mysql分表》这篇文章主要为大家详细介绍了基于SpringBoot+Mybatis实现Mysql分表的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录基本思路定义注解创建ThreadLocal创建拦截器业务处理基本思路1.根据创建时间字段按年进

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整