本文主要是介绍【LeetCode: 785. 判断二分图 + bfs】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
🚀 算法题 🚀 |
🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀
🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨
🌲 作者简介:硕风和炜,CSDN-Java领域优质创作者🏆,保研|国家奖学金|高中学习JAVA|大学完善JAVA开发技术栈|面试刷题|面经八股文|经验分享|好用的网站工具分享💎💎💎
🌲 恭喜你发现一枚宝藏博主,赶快收入囊中吧🌻
🌲 人生如棋,我愿为卒,行动虽慢,可谁曾见我后退一步?🎯🎯
🚀 算法题 🚀 |
🍔 目录
- 🚩 题目链接
- ⛲ 题目描述
- 🌟 求解思路&实现代码&运行结果
- ⚡ bfs
- 🥦 求解思路
- 🥦 实现代码
- 🥦 运行结果
- 💬 共勉
🚩 题目链接
- 785. 判断二分图
⛲ 题目描述
存在一个 无向图 ,图中有 n 个节点。其中每个节点都有一个介于 0 到 n - 1 之间的唯一编号。给你一个二维数组 graph ,其中 graph[u] 是一个节点数组,由节点 u 的邻接节点组成。形式上,对于 graph[u] 中的每个 v ,都存在一条位于节点 u 和节点 v 之间的无向边。该无向图同时具有以下属性:
不存在自环(graph[u] 不包含 u)。
不存在平行边(graph[u] 不包含重复值)。
如果 v 在 graph[u] 内,那么 u 也应该在 graph[v] 内(该图是无向图)
这个图可能不是连通图,也就是说两个节点 u 和 v 之间可能不存在一条连通彼此的路径。
二分图 定义:如果能将一个图的节点集合分割成两个独立的子集 A 和 B ,并使图中的每一条边的两个节点一个来自 A 集合,一个来自 B 集合,就将这个图称为 二分图 。
如果图是二分图,返回 true ;否则,返回 false 。
示例 1:
输入:graph = [[1,2,3],[0,2],[0,1,3],[0,2]]
输出:false
解释:不能将节点分割成两个独立的子集,以使每条边都连通一个子集中的一个节点与另一个子集中的一个节点。
示例 2:
输入:graph = [[1,3],[0,2],[1,3],[0,2]]
输出:true
解释:可以将节点分成两组: {0, 2} 和 {1, 3} 。
提示:
graph.length == n
1 <= n <= 100
0 <= graph[u].length < n
0 <= graph[u][i] <= n - 1
graph[u] 不会包含 u
graph[u] 的所有值 互不相同
如果 graph[u] 包含 v,那么 graph[v] 也会包含 u
🌟 求解思路&实现代码&运行结果
⚡ bfs
🥦 求解思路
- 遍历所有节点,遍历的过程中用两种不同的颜色对顶点进行染色,相邻顶点染成相反的颜色。这个过程中如果发现相邻的顶点被染成了相同的颜色,说明它不是二分图;反之,如果所有的连通域都染色成功,说明它是二分图。
- 有了基本的思路,接下来我们就来通过代码来实现一下。
🥦 实现代码
class Solution {public boolean isBipartite(int[][] graph) {int[] visited = new int[graph.length];Queue<Integer> queue = new LinkedList<>();for (int i = 0; i < graph.length; i++) {if (visited[i] != 0) {continue;}queue.offer(i);visited[i] = 1;while (!queue.isEmpty()) {int v = queue.poll();for (int w: graph[v]) {if (visited[w] == visited[v]) {return false;}if (visited[w] == 0) {visited[w] = -visited[v];queue.offer(w);}} }}return true;}
}
🥦 运行结果
💬 共勉
最后,我想和大家分享一句一直激励我的座右铭,希望可以与大家共勉! |
这篇关于【LeetCode: 785. 判断二分图 + bfs】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!