本文主要是介绍算法学习——LeetCode力扣补充篇8(146. LRU 缓存、 215. 数组中的第K个最大元素、25. K 个一组翻转链表),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
算法学习——LeetCode力扣补充篇8
146. LRU 缓存
146. LRU 缓存 - 力扣(LeetCode)
描述
请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。
实现 LRUCache 类:
LRUCache(int capacity) 以 正整数 作为容量 capacity 初始化 LRU 缓存
int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1 。
void put(int key, int value) 如果关键字 key 已经存在,则变更其数据值 value ;如果不存在,则向缓存中插入该组 key-value 。如果插入操作导致关键字数量超过 capacity ,则应该 逐出 最久未使用的关键字。
函数 get 和 put 必须以 O(1) 的平均时间复杂度运行。
示例
示例:
输入
[“LRUCache”, “put”, “put”, “get”, “put”, “get”, “put”, “get”, “get”, “get”]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
输出
[null, null, null, 1, null, -1, null, -1, 3, 4]
解释
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // 缓存是 {1=1}
lRUCache.put(2, 2); // 缓存是 {1=1, 2=2}
lRUCache.get(1); // 返回 1
lRUCache.put(3, 3); // 该操作会使得关键字 2 作废,缓存是 {1=1, 3=3}
lRUCache.get(2); // 返回 -1 (未找到)
lRUCache.put(4, 4); // 该操作会使得关键字 1 作废,缓存是 {4=4, 3=3}
lRUCache.get(1); // 返回 -1 (未找到)
lRUCache.get(3); // 返回 3
lRUCache.get(4); // 返回 4
提示
1 <= capacity <= 3000
0 <= key <= 10000
0 <= value <= 105
最多调用 2 * 105 次 get 和 put
代码解析
链表法(超时)
class LRUCache {
public:list<pair<int,int>> my_list;int max_size = 0;LRUCache(int capacity) {max_size = capacity;}int get(int key) {auto it = my_list.begin();for(int i=0 ; i<my_list.size() ;i++,it++){if(it->first == key) {pair<int,int> tmp = *it;my_list.erase(it);my_list.push_front(tmp);return tmp.second;}}return -1;}void put(int key, int value) {auto it = my_list.begin();for(int i=0 ; i<my_list.size() ;i++,it++){if(it->first == key){my_list.erase(it);break;}}my_list.push_front({key,value});if(my_list.size() > max_size) my_list.pop_back();return ;}
};/*** Your LRUCache object will be instantiated and called as such:* LRUCache* obj = new LRUCache(capacity);* int param_1 = obj->get(key);* obj->put(key,value);*/
自制双向链表
class LRUCache {
public:struct Node{int key;int value;Node* pre;Node* next;Node():key(0),value(0),pre(nullptr),next(nullptr) {}Node(int x,int y):key(x),value(y),pre(nullptr),next(nullptr) {}};LRUCache(int capacity) {_capacity = capacity;head = new Node();tail = new Node();head->next = tail;tail->pre = head;}int get(int key) {if(my_map.find(key) == my_map.end() ) return -1;Node* tmp = my_map[key];remove_node(tmp);add_head(tmp);return tmp->value;}void put(int key, int value) {if(my_map.find(key) == my_map.end() ) //不存在{Node* new_node = new Node(key,value);my_map[key] = new_node;add_head(new_node);size++;if(size > _capacity){my_map.erase(tail->pre->key);remove_node(tail->pre);}}else{Node* tmp = my_map[key];tmp->value = value;remove_node(tmp);add_head(tmp);}}void add_head(Node* new_node){new_node->pre = head;new_node->next = head->next;head->next->pre = new_node;head->next = new_node;}void remove_node(Node* node){node->pre->next = node->next;node->next->pre = node->pre;}
private:int _capacity;Node* head;Node* tail;int size=0;unordered_map<int,Node*> my_map;};/*** Your LRUCache object will be instantiated and called as such:* LRUCache* obj = new LRUCache(capacity);* int param_1 = obj->get(key);* obj->put(key,value);*/
215. 数组中的第K个最大元素
215. 数组中的第K个最大元素 - 力扣(LeetCode)
描述
给定整数数组 nums 和整数 k,请返回数组中第 k 个最大的元素。
请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。
你必须设计并实现时间复杂度为 O(n) 的算法解决此问题。
示例
示例 1:
输入: [3,2,1,5,6,4], k = 2
输出: 5
示例 2:
输入: [3,2,3,1,2,4,5,5,6], k = 4
输出: 4
提示
1 <= k <= nums.length <= 105
-104 <= nums[i] <= 104
代码解析
库函数
class Solution {
public:int findKthLargest(vector<int>& nums, int k) {sort(nums.begin(),nums.end());return nums[nums.size()-k];}
};
快速排序
class Solution {
public:void swap(int &a , int &b){int tmp = b;b = a;a = tmp;}int part(vector<int>& nums , int left , int right){int key = nums[left];while(left<right){while(left < right && nums[right] <= key) right--;swap(nums[left] , nums[right]);while(left < right && nums[left] >= key) left++;swap(nums[left] , nums[right]);}return left;}void quick_sort(vector<int>& nums , int left , int right){if(left > right) return;int mid = part(nums,left,right);quick_sort(nums,left,mid-1);quick_sort(nums,mid+1,right);}int findKthLargest(vector<int>& nums, int k) {quick_sort(nums,0,nums.size()-1);return nums[k-1];}
};
快速排序
class Solution {
public:void quickSort(vector<int>& arr, int left, int right) {// 定义枢轴int pivot = arr[(left + right) / 2];//int pivot = arr[left]; 也可以// 定义两个指针int i = left;int j = right;// 当左指针比右指针小时继续循环while (i <= j){// 左指针从左往右扫描,直到找到一个元素比枢轴大while (arr[i] > pivot) i++;// 右指针从右往左扫描,直到找到一个元素比枢轴小while (arr[j] < pivot) j--;// 如果两个指针没有相遇,交换它们所指向的元素if (i <= j){int temp = arr[i];arr[i] = arr[j];arr[j] = temp;i++;j--;}}// 如果左边还有元素,递归左边的排序if (left < j) quickSort(arr, left, j);// 如果右边还有元素,递归右边的排序if (i < right) quickSort(arr, i, right);}int findKthLargest(vector<int>& nums, int k) {quickSort(nums,0,nums.size()-1);return nums[k-1];}
};
25. K 个一组翻转链表
25. K 个一组翻转链表 - 力扣(LeetCode)
描述
给你链表的头节点 head ,每 k 个节点一组进行翻转,请你返回修改后的链表。
k 是一个正整数,它的值小于或等于链表的长度。如果节点总数不是 k 的整数倍,那么请将最后剩余的节点保持原有顺序。
你不能只是单纯的改变节点内部的值,而是需要实际进行节点交换。
示例
示例 1:
输入:head = [1,2,3,4,5], k = 2
输出:[2,1,4,3,5]
示例 2:
输入:head = [1,2,3,4,5], k = 3
输出:[3,2,1,4,5]
提示
链表中的节点数目为 n
1 <= k <= n <= 5000
0 <= Node.val <= 1000
进阶:你可以设计一个只用 O(1) 额外内存空间的算法解决此问题吗?
代码解析
/*** Definition for singly-linked list.* struct ListNode {* int val;* ListNode *next;* ListNode() : val(0), next(nullptr) {}* ListNode(int x) : val(x), next(nullptr) {}* ListNode(int x, ListNode *next) : val(x), next(next) {}* };*/
class Solution {
public:ListNode* reverseKGroup(ListNode* head, int k) {stack<int> my_stack;vector<int> v_nums;ListNode* tmp = head;int num = 0;while(tmp != nullptr && num < k){num++;v_nums.push_back(tmp->val);my_stack.push(tmp->val);if(num == k){while(num--) v_nums.pop_back();num = k;while(num--){v_nums.push_back(my_stack.top());my_stack.pop();}cout<<num<<' ';num = 0;}tmp = tmp->next;}tmp = head;int i=0;while(tmp != nullptr){tmp->val = v_nums[i];tmp = tmp->next;i++;}return head;}
};
这篇关于算法学习——LeetCode力扣补充篇8(146. LRU 缓存、 215. 数组中的第K个最大元素、25. K 个一组翻转链表)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!