即插即用模块详解SCConv:用于特征冗余的空间和通道重构卷积

本文主要是介绍即插即用模块详解SCConv:用于特征冗余的空间和通道重构卷积,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、摘要

二、创新点说明

2.1 Methodology

 2.2SRU for Spatial Redundancy​编辑

2.3CRU for Channel Redundancy

三、实验

3.1基于CIFAR的图像分类

3.2基于ImageNet的图像分类

3.3对象检测

四、代码详解

五、总结


论文:https://openaccess.thecvf.com/content/CVPR2023/papers/Li_SCConv_Spatial_and_Channel_Reconstruction_Convolution_for_Feature_Redundancy_CVPR_2023_paper.pdf

代码:GitHub - cheng-haha/ScConv: SCConv: Spatial and Channel Reconstruction Convolution for Feature Redundancy

一、摘要

卷积神经网络(cnn)在各种计算机视觉任务中取得了显著的性能,但这是以巨大的计算资源为代价的,部分原因是卷积层提取冗余特征。最近的作品要么压缩训练有素的大型模型,要么探索设计良好的轻量级模型。在本文中,我们尝试利用特征之间的空间和通道冗余来进行CNN压缩,并提出了一种高效的卷积模块,称为SCConv (spatial and channel reconstruction convolution),以减少冗余计算并促进代表性特征的学习。提出的SCConv由空间重构单元(SRU)和信道重构单元(CRU)两个单元组成。SRU采用分离重构的方法来抑制空间冗余,CRU采用分离变换融合的策略来减少信道冗余。此外,SCConv是一种即插即用的架构单元,可直接用于替代各种卷积神经网络中的标准卷积。实验结果表明,SCConv嵌入模型能够通过减少冗余特征来获得更好的性能,并且显著降低了复杂度和计算成本。

论文贡献总结:

       1. 提出了一种空间重构单元SRU,该单元根据权重分离冗余特征并进行重构,以抑制空间维度上的冗余,增强特征的表征能力。
       2. 我们提出了一种信道重构单元,称为CRU,它利用分裂变换和融合策略来减少信道维度的冗余以及计算成本和存储。
        3.我们设计了一种名为SCConv的即插即用操作,将SRU和CRU以顺序的方式组合在一起,以取代标准卷积,用于在各种骨干cnn上操作。结果表明,SCConv可以大大节省计算负荷,同时提高模型在挑战性任务上的性能。

二、创新点说明

2.1 Methodology

SCConv,它由两个单元组成,空间重建单元(SRU)和通道重建单元(CRU),以顺序的方式放置。具体而言,对于瓶颈残差块中的中间输入特征X,我们首先通过SRU运算获得空间细化特征Xw,然后利用CRU运算获得信道细化特征Y。我们在SCConv模块中利用了特征之间的空间冗余和通道冗余,可以无缝集成到任何CNN架构中,以减少中间特征映射之间的冗余并增强CNN的特征表示。

 2.2SRU for Spatial Redundancy

为了利用特征的空间冗余,我们引入了空间重构单元(SRU),如图2所示,它利用了分离和重构操作。分离操作的目的是将信息丰富的特征图与空间内容对应的信息较少的特征图分离开来。

2.3CRU for Channel Redundancy

为了利用特征的信道冗余,我们引入了信道重构单元(CRU),如图3所示,它利用了分裂-转换-融合策略。

三、实验

3.1基于CIFAR的图像分类

3.2基于ImageNet的图像分类

3.3对象检测

四、代码详解

import torch  # 导入 PyTorch 库
import torch.nn.functional as F  # 导入 PyTorch 的函数库
import torch.nn as nn  # 导入 PyTorch 的神经网络模块# 自定义 GroupBatchnorm2d 类,实现分组批量归一化
class GroupBatchnorm2d(nn.Module):def __init__(self, c_num:int, group_num:int = 16, eps:float = 1e-10):super(GroupBatchnorm2d,self).__init__()  # 调用父类构造函数assert c_num >= group_num  # 断言 c_num 大于等于 group_numself.group_num  = group_num  # 设置分组数量self.gamma      = nn.Parameter(torch.randn(c_num, 1, 1))  # 创建可训练参数 gammaself.beta       = nn.Parameter(torch.zeros(c_num, 1, 1))  # 创建可训练参数 betaself.eps        = eps  # 设置小的常数 eps 用于稳定计算def forward(self, x):N, C, H, W  = x.size()  # 获取输入张量的尺寸x           = x.view(N, self.group_num, -1)  # 将输入张量重新排列为指定的形状mean        = x.mean(dim=2, keepdim=True)  # 计算每个组的均值std         = x.std(dim=2, keepdim=True)  # 计算每个组的标准差x           = (x - mean) / (std + self.eps)  # 应用批量归一化x           = x.view(N, C, H, W)  # 恢复原始形状return x * self.gamma + self.beta  # 返回归一化后的张量# 自定义 SRU(Spatial and Reconstruct Unit)类
class SRU(nn.Module):def __init__(self,oup_channels:int,  # 输出通道数group_num:int = 16,  # 分组数,默认为16gate_treshold:float = 0.5,  # 门控阈值,默认为0.5torch_gn:bool = False  # 是否使用PyTorch内置的GroupNorm,默认为False):super().__init__()  # 调用父类构造函数# 初始化 GroupNorm 层或自定义 GroupBatchnorm2d 层self.gn = nn.GroupNorm(num_channels=oup_channels, num_groups=group_num) if torch_gn else GroupBatchnorm2d(c_num=oup_channels, group_num=group_num)self.gate_treshold  = gate_treshold  # 设置门控阈值self.sigomid        = nn.Sigmoid()  # 创建 sigmoid 激活函数def forward(self, x):gn_x        = self.gn(x)  # 应用分组批量归一化w_gamma     = self.gn.gamma / sum(self.gn.gamma)  # 计算 gamma 权重reweights   = self.sigomid(gn_x * w_gamma)  # 计算重要性权重# 门控机制info_mask    = reweights >= self.gate_treshold  # 计算信息门控掩码noninfo_mask = reweights < self.gate_treshold  # 计算非信息门控掩码x_1          = info_mask * x  # 使用信息门控掩码x_2          = noninfo_mask * x  # 使用非信息门控掩码x            = self.reconstruct(x_1, x_2)  # 重构特征return xdef reconstruct(self, x_1, x_2):x_11, x_12 = torch.split(x_1, x_1.size(1) // 2, dim=1)  # 拆分特征为两部分x_21, x_22 = torch.split(x_2, x_2.size(1) // 2, dim=1)  # 拆分特征为两部分return torch.cat([x_11 + x_22, x_12 + x_21], dim=1)  # 重构特征并连接# 自定义 CRU(Channel Reduction Unit)类
class CRU(nn.Module):def __init__(self, op_channel:int, alpha:float = 1/2, squeeze_radio:int = 2, group_size:int = 2, group_kernel_size:int = 3):super().__init__()  # 调用父类构造函数self.up_channel     = up_channel = int(alpha * op_channel)  # 计算上层通道数self.low_channel    = low_channel = op_channel - up_channel  # 计算下层通道数self.squeeze1       = nn.Conv2d(up_channel, up_channel // squeeze_radio, kernel_size=1, bias=False)  # 创建卷积层self.squeeze2       = nn.Conv2d(low_channel, low_channel // squeeze_radio, kernel_size=1, bias=False)  # 创建卷积层# 上层特征转换self.GWC            = nn.Conv2d(up_channel // squeeze_radio, op_channel, kernel_size=group_kernel_size, stride=1, padding=group_kernel_size // 2, groups=group_size)  # 创建卷积层self.PWC1           = nn.Conv2d(up_channel // squeeze_radio, op_channel, kernel_size=1, bias=False)  # 创建卷积层# 下层特征转换self.PWC2           = nn.Conv2d(low_channel // squeeze_radio, op_channel - low_channel // squeeze_radio, kernel_size=1, bias=False)  # 创建卷积层self.advavg         = nn.AdaptiveAvgPool2d(1)  # 创建自适应平均池化层def forward(self, x):# 分割输入特征up, low = torch.split(x, [self.up_channel, self.low_channel], dim=1)up, low = self.squeeze1(up), self.squeeze2(low)# 上层特征转换Y1 = self.GWC(up) + self.PWC1(up)# 下层特征转换Y2 = torch.cat([self.PWC2(low), low], dim=1)# 特征融合out = torch.cat([Y1, Y2], dim=1)out = F.softmax(self.advavg(out), dim=1) * outout1, out2 = torch.split(out, out.size(1) // 2, dim=1)return out1 + out2# 自定义 ScConv(Squeeze and Channel Reduction Convolution)模型
class ScConv(nn.Module):def __init__(self, op_channel:int, group_num:int = 16, gate_treshold:float = 0.5, alpha:float = 1/2, squeeze_radio:int = 2, group_size:int = 2, group_kernel_size:int = 3):super().__init__()  # 调用父类构造函数self.SRU = SRU(op_channel, group_num=group_num, gate_treshold=gate_treshold)  # 创建 SRU 层self.CRU = CRU(op_channel, alpha=alpha, squeeze_radio=squeeze_radio, group_size=group_size, group_kernel_size=group_kernel_size)  # 创建 CRU 层def forward(self, x):x = self.SRU(x)  # 应用 SRU 层x = self.CRU(x)  # 应用 CRU 层return xif __name__ == '__main__':x       = torch.randn(1, 32, 16, 16)  # 创建随机输入张量model   = ScConv(32)  # 创建 ScConv 模型print(model(x).shape)  # 打印模型输出的形状

五、总结

在本文中,我们提出了一种新的空间和信道重构模块(SCConv),这是一种有效的架构单元,可以降低计算成本和模型存储,同时通过减少标准卷积中广泛存在的空间和信道冗余来提高CNN模型的性能。我们使用两个不同的模块SRU和CRU来减少特征映射中的冗余,在减少大量计算负载的同时实现了相当大的性能改进。此外,SCConv是一个即插即用的模块,可以替代标准的卷积,不需要任何模型架构的调整。此外,各种SOTA方法在图像分类和目标检测方面的大量实验表明,scconvn嵌入模型在性能和模型效率之间取得了更好的平衡。最后,我们希望所提出的方法可以启发研究更有效的建筑设计。

参考:大佬

这篇关于即插即用模块详解SCConv:用于特征冗余的空间和通道重构卷积的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/909344

相关文章

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

Spring Boot spring-boot-maven-plugin 参数配置详解(最新推荐)

《SpringBootspring-boot-maven-plugin参数配置详解(最新推荐)》文章介绍了SpringBootMaven插件的5个核心目标(repackage、run、start... 目录一 spring-boot-maven-plugin 插件的5个Goals二 应用场景1 重新打包应用

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

java使用protobuf-maven-plugin的插件编译proto文件详解

《java使用protobuf-maven-plugin的插件编译proto文件详解》:本文主要介绍java使用protobuf-maven-plugin的插件编译proto文件,具有很好的参考价... 目录protobuf文件作为数据传输和存储的协议主要介绍在Java使用maven编译proto文件的插件

Android ClassLoader加载机制详解

《AndroidClassLoader加载机制详解》Android的ClassLoader负责加载.dex文件,基于双亲委派模型,支持热修复和插件化,需注意类冲突、内存泄漏和兼容性问题,本文给大家介... 目录一、ClassLoader概述1.1 类加载的基本概念1.2 android与Java Class

Java中的数组与集合基本用法详解

《Java中的数组与集合基本用法详解》本文介绍了Java数组和集合框架的基础知识,数组部分涵盖了一维、二维及多维数组的声明、初始化、访问与遍历方法,以及Arrays类的常用操作,对Java数组与集合相... 目录一、Java数组基础1.1 数组结构概述1.2 一维数组1.2.1 声明与初始化1.2.2 访问

SpringBoot线程池配置使用示例详解

《SpringBoot线程池配置使用示例详解》SpringBoot集成@Async注解,支持线程池参数配置(核心数、队列容量、拒绝策略等)及生命周期管理,结合监控与任务装饰器,提升异步处理效率与系统... 目录一、核心特性二、添加依赖三、参数详解四、配置线程池五、应用实践代码说明拒绝策略(Rejected