利用穷举算法求一个整数数组A中的逆序对的个数(C语言)

2024-04-16 16:04

本文主要是介绍利用穷举算法求一个整数数组A中的逆序对的个数(C语言),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

实验内容:

实验过程:

1.算法设计

2.程序清单

3.复杂度分析

4.实验结果


实验内容

给定一个整数数组A=(a0,a1,…,an-1),若i<j且ai>aj,则<ai,aj>就为一个逆序对,例如数组(3,1,4,5,2)的逆序对有<3,1>,<3,2>,<4,2>,<5,2>。设计一个穷举算法求A中的逆序对的个数。(分别用基本蛮力算法和递归蛮力算法实现)

实验过程

1.算法设计

  • 基本蛮力算法:

实现countA函数,遍历数组a中所有相邻元素对(a[i],a[j])(i<j),通过双层嵌套循环实现。若a[i] > a[j],记逆序对数count加 1。循环结束后返回count。

  • 递归蛮力算法:

定义辅助函数 mergeB,接收已排序子数组a[left...mid]和a[mid+1...right],统计合并过程中产生的逆序对(a[i] > a[j]),结果存回原数组。递归函数countB接收数组a及左右边界,当区间只有一个元素时返回 0;否则,递归计算左右子区间的逆序对数,调用mergeB合并子区间并累加逆序对数,返回总逆序对数。

主程序中,定义数组a及其长度n,分别调用两种方法计算逆序对数量并输出。

2.程序清单

#include <stdio.h>
//第一种方法:基本蛮力算法
int countA(int a[], int n) {int count = 0;for (int i = 0; i < n - 1; ++i) {for (int j = i + 1; j < n; ++j) {if (a[i] > a[j]) {count++;}}}return count;
}
//第二种方法:递归蛮力算法
int mergeB(int a[], int left, int mid, int right) {int i = left, j = mid, k = left, count = 0;int temp[10];while (i <=mid && j <= right) {if (a[i] <= a[j]) {temp[k++] = a[i++];} else {temp[k++] = a[j++];count++;  }}while (i<=mid) {temp[k++] = a[i++];}while (j <= right) {temp[k++] = a[j++];}//将temp数组赋值给a数组for (i = left; i <= right; i++) {a[i] = temp[i - left];}return count;
}
int countB(int a[], int left, int right) {int count = 0;if (left < right) {int mid = (left+right) / 2;count += countB(a, left, mid);count += countB(a, mid + 1, right);count += mergeB(a, left, mid+1, right);}return count;
}
int main() {int a[] = {3, 1, 4, 5, 2};int n = sizeof(a) / sizeof(a[0]);int inversions1 = countA(a, n);printf("第一种方法:暴力算法\n");printf("a中的逆序对的个数为: %d\n", inversions1);int inversions2= countB(a, 0, n - 1);printf("第二种方法:递归蛮力算法\n");printf("a中的逆序对的个数为: %d\n", inversions2);return 0;
}

3.复杂度分析

(1)时间复杂度

基本蛮力算法

时间复杂度:该方法通过两层嵌套循环遍历数组,外层循环 i 从 0 到 n-2,内层循环 j 从 i+1 到 n-1。每次比较 a[i] 和 a[j],若 a[i] > a[j],则计数器 count 增加。总共有 C(n, 2) = n*(n-1)/2 对元素需要比较,故时间复杂度为 O(n^2)。

递归蛮力算法

时间复杂度:该方法采用了分治策略,类似于归并排序的思想。递归函数 countB 会将数组 a 分割成两部分,分别计算左右子数组的逆序对数量,并通过 mergeB 函数合并子数组时统计跨越左右子数组的逆序对数量。mergeB 函数的时间复杂度为 O((right-left+1)),而 countB 函数递归调用自身两次,每次处理的子问题规模大约减半。因此,整个递归过程的时间复杂度符合以下关系:

T(n) = 2*T(n/2) + O(n)

这是典型的分治算法时间复杂度形式,根据主定理,其解为 T(n) = O(n log n)。

(2)空间复杂度

基本蛮力算法

空间复杂度:该方法仅使用了若干固定大小的变量(如 count、i、j),不依赖于输入数组的大小,因此空间复杂度为 O(1)。

递归蛮力算法

空间复杂度:递归调用过程中,需要额外的空间存储递归调用栈。最坏情况下,递归深度为 log n,每层递归调用需要 O(n) 的额外空间(临时数组 temp)。因此,空间复杂度为 O(n log n)。

4.实验结果

这篇关于利用穷举算法求一个整数数组A中的逆序对的个数(C语言)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/909257

相关文章

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

Java中的数组与集合基本用法详解

《Java中的数组与集合基本用法详解》本文介绍了Java数组和集合框架的基础知识,数组部分涵盖了一维、二维及多维数组的声明、初始化、访问与遍历方法,以及Arrays类的常用操作,对Java数组与集合相... 目录一、Java数组基础1.1 数组结构概述1.2 一维数组1.2.1 声明与初始化1.2.2 访问

Go语言中make和new的区别及说明

《Go语言中make和new的区别及说明》:本文主要介绍Go语言中make和new的区别及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1 概述2 new 函数2.1 功能2.2 语法2.3 初始化案例3 make 函数3.1 功能3.2 语法3.3 初始化

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Go语言中nil判断的注意事项(最新推荐)

《Go语言中nil判断的注意事项(最新推荐)》本文给大家介绍Go语言中nil判断的注意事项,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.接口变量的特殊行为2.nil的合法类型3.nil值的实用行为4.自定义类型与nil5.反射判断nil6.函数返回的

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

Go语言代码格式化的技巧分享

《Go语言代码格式化的技巧分享》在Go语言的开发过程中,代码格式化是一个看似细微却至关重要的环节,良好的代码格式化不仅能提升代码的可读性,还能促进团队协作,减少因代码风格差异引发的问题,Go在代码格式... 目录一、Go 语言代码格式化的重要性二、Go 语言代码格式化工具:gofmt 与 go fmt(一)

MySQL JSON 查询中的对象与数组技巧及查询示例

《MySQLJSON查询中的对象与数组技巧及查询示例》MySQL中JSON对象和JSON数组查询的详细介绍及带有WHERE条件的查询示例,本文给大家介绍的非常详细,mysqljson查询示例相关知... 目录jsON 对象查询1. JSON_CONTAINS2. JSON_EXTRACT3. JSON_TA