IK分词源码分析连载(四)--停用词+未切分词处理

2023-10-03 23:40

本文主要是介绍IK分词源码分析连载(四)--停用词+未切分词处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转载请注明出处:
http://blog.chinaunix.net/uid-20761674-id-3425302.html
 
前面三篇文章介绍了IK分词的两个核心模块:子分词器和歧义处理,这篇文章收尾,介绍停用词以及未切分词的处理方法:
process已经介绍过了,接下来关注processUnknownCJKChar()和getNextLexeme()
//对分词进行歧义处理
this.arbitrator.process(context, this.cfg.useSmart());            
//处理未切分CJK字符
context.processUnkownCJKChar();
//记录本次分词的缓冲区位移
context.markBufferOffset();
//输出词元
if(this.context.hasNextResult()){
return this.context.getNextLexeme();
}
不逐句分析了,比较简单,说明如下:
  • 过滤掉CHAR_USELESS字符,包括标点、无法识别的字符
  • pathMap存储的是lexemePath集合,找出相邻的lexemePath,把它们之间未切分的字符逐字符输出
/**
* 处理未知类型的CJK字符
*/
void processUnkownCJKChar(){
int index = 0;
for( ; index < this.available ;){
//跳过标点符号等字符
if(CharacterUtil.CHAR_USELESS == this.charTypes[index]){
index++;
continue;
}
//从pathMap找出对应index位置的LexemePath
LexemePath path = this.pathMap.get(index);
if(path != null){
//输出LexemePath中的lexeme到results集合
Lexeme l = path.pollFirst();
while(l != null){
this.results.add(l);
//将index移至lexeme后
index = l.getBegin() + l.getLength();                    
l = path.pollFirst();
if(l != null){
//jw输出两个path之间没有匹配到的字符,直接单字输出
//输出path内部,词元间遗漏的单字
for(;index < l.getBegin();index++){
this.outputSingleCJK(index);
}
}
}
}else{//pathMap中找不到index对应的LexemePath
//jw没有匹配的字符,直接单字输出
//单字输出
this.outputSingleCJK(index);
index++;
}
}
//清空当前的Map
this.pathMap.clear();
}
<span style="font-family:幼圆;font-size:18px;"></span>

markBufferOffset(),这个函数就是标记buffer中的cursor指针,标明现在已经处理到哪个字符了

最后来看getNextLexeme(),从最终的分词结果集中取出分词结果,输出compound()合并数量词,将相邻的数量词切分结果进行合并

  • compound()合并数量词,将相邻的数量词切分结果进行合并
  • 如果取出来的词是停用词,则过滤掉,不输出
//jw这里处理数量词合并以及停用词处理
Lexeme getNextLexeme(){
//从结果集取出,并移除第一个Lexme
Lexeme result = this.results.pollFirst();
while(result != null){
//数量词合并
this.compound(result);
if(Dictionary.getSingleton().isStopWord(this.segmentBuff , result.getBegin() , result.getLength())){
//是停止词继续取列表的下一个
result = this.results.pollFirst();                 
}else{
//不是停止词, 生成lexeme的词元文本,输出
result.setLexemeText(String.valueOf(segmentBuff , result.getBegin() , result.getLength()));
break;
}
}
System.out.println("AnalyzeContext.java getNextLexeme result:" + result.getLexemeText());
return result;
}
 
到这里,IK分词的大部分功能都已经介绍完了,还有词典初始化,配置文件使用等功能不是核心功能,无关紧要,暂时就不做分析了,后续有需要再继续
总结下,IK分词还是非常简单的,没有复杂的处理过程,效果也还可以,是学习分词的不错工具,我花了3天左右时间就能基本了解IK原理

 

上一篇 IK分词源码分析连载(三)--歧义处理

 

这篇关于IK分词源码分析连载(四)--停用词+未切分词处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/909

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

Python自动化处理PDF文档的操作完整指南

《Python自动化处理PDF文档的操作完整指南》在办公自动化中,PDF文档处理是一项常见需求,本文将介绍如何使用Python实现PDF文档的自动化处理,感兴趣的小伙伴可以跟随小编一起学习一下... 目录使用pymupdf读写PDF文件基本概念安装pymupdf提取文本内容提取图像添加水印使用pdfplum

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

基于Redis自动过期的流处理暂停机制

《基于Redis自动过期的流处理暂停机制》基于Redis自动过期的流处理暂停机制是一种高效、可靠且易于实现的解决方案,防止延时过大的数据影响实时处理自动恢复处理,以避免积压的数据影响实时性,下面就来详... 目录核心思路代码实现1. 初始化Redis连接和键前缀2. 接收数据时检查暂停状态3. 检测到延时过

Java利用@SneakyThrows注解提升异常处理效率详解

《Java利用@SneakyThrows注解提升异常处理效率详解》这篇文章将深度剖析@SneakyThrows的原理,用法,适用场景以及隐藏的陷阱,看看它如何让Java异常处理效率飙升50%,感兴趣的... 目录前言一、检查型异常的“诅咒”:为什么Java开发者讨厌它1.1 检查型异常的痛点1.2 为什么说