Python环境下基于动态模态分解的股票价格预测

2024-04-16 08:44

本文主要是介绍Python环境下基于动态模态分解的股票价格预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

动态模态分解模型的基本思想是直接从数据模拟得到的流场中提取流动的动态信息,根据不同频率的流场变动寻找数据映射,基于动态非线性无穷维转化成动态线性有穷维的方式,采用了Arnoldi 方法以及奇异值分解SVD降维的思想,借鉴了ARIMA、SARIMA 以及季节模型等许多时间序列的关键特征,被广泛的使用在数学、物理、金融等领域。

动态模态分解按照频率对系统进行排序,提取系统特征频率,从而观察不同频率的流动结构对流场的贡献,同时动态模态分解模态特征值可以进行流场预测。因为动态模态分解算法理论的严密性、稳定性、简易性等优点,在不断被运用的同时,动态模态分解算法也在本来的基础之上不断被完善,如与SPA检验结合起来,以验证股票价格预测对比基准点的强有效性;以及通过联系动态模态分解算法和光谱研究的方式,模拟股票市场在循环经济当中的震动,均能够有效地采集分析数据,并最终得到结果。

import numpy as np
import pandas as pd
import datetime
import matplotlib.pyplot as plt
import matplotlib as mpl#%% Load data
data = pd.read_csv('historical_stock_prices.csv')#%% User inputs
# Choose dates
start_date = '2014-03-18'
end_date = '2015-03-18'# Choose tickers
s1 = 'AEO'
s2 = 'ANF'
s3 = 'FL'
s4 = 'GPS'
s5 = 'SCVL'
s6 = 'RL'
s7 = 'URBN'
s8 = 'ROST'# Number of past days to build the DMD model on
mp = 7
# Number of future days to predict with DMD
mf = 1# Percentage of portfolio to sell off each day
sell_perc = 0.25# Initial capital
init_cap = 1e6#%% Functionsdef GetPrices(portfolio_size, bigX, current_day):'''Gets the day close prices of each company in the portfolio at the currentdayInputs:portfolio_size: int, the number of companies that we can trade withbigX: array (portfolio size * number of days), consisting of time series close prices along the columns and new companies along the rowscurrent_day: int, the last day considered in the DMD model construction inorder to make a prediction about the next dayreturns: day_close: array (portfolio size * 1), consisting of close prices for each company on the current day'''# Find prices on a given dayday_close = np.zeros(shape=(portfolio_size,1))for i in range(0,portfolio_size):day_close[i,0] = bigX[i,current_day-1]return day_closedef Trade(current_day, mp, mf, bigX, portfolio_size, stock_amounts, day_close, sell_perc):'''The core algorithm, executing trades and stepping forward days in time.Inputs:current_day: int, the last day considered in the DMD model construction inorder to make a prediction about the next daymp: int, number of historical days used to build the DMD modelmf: int, number of days to predict in the future with the DMD modelbigX: array (portfolio size * number of days), consisting of time series close prices along the columns and new companies along the rowsportfolio_size: int, the number of companies that we can trade withstock_amounts: array (portfolio size * 1), the number of stocks for each company held in the portfolio at the current dayday_close: array (portfolio size * 1), consisting of close prices for each company on the current daysell_perc: float, a user input defining which proportion of the portfolio valueshould be sold at the end of each dayreturns: stock_amounts: array (portfolio size * 1), the number of stocks for each company held in the portfolio after trades have been executedday_close: array (portfolio size * 1), consisting of the new day close prices after stepping forward one daycurrent_day: int, the next day after taking one step forward'''first_day = current_day - (mp-1)# Time vector spans mp+mf, DMD will extrapolate to make a prediction about mft = list(range(first_day,mp+first_day+1))# Form the DMD matricesX1 = bigX[:,(first_day-1):(current_day-1)]X2 = bigX[:,(first_day):current_day]# Snapshots separated by 1 trading daydt = 1# Conduct DMDPhi, b, omega = DMD(X1, X2, dt)# DMD reconstruction to predict price on current_day + 1price_predictions = DMDreconstruct(X1, t, b, omega, Phi, mp, mf)# Calculate increases in price between current_day and the following dayprice_increases = np.zeros(shape=(portfolio_size,1))for i in range(0,portfolio_size):price_increases[i,0] = (price_predictions[i] - bigX[i,current_day-1])/bigX[i,current_day-1]# Calculate current portfolio valueportfolio_value = np.zeros(shape=(portfolio_size,1))for i in range(0,portfolio_size):portfolio_value[i,0] = stock_amounts[i,0]*day_close[i,0]# Sell bottom 25% of portfoliocash, stock_amounts = Sell(portfolio_value, sell_perc, price_increases, portfolio_size, stock_amounts, day_close)# Buy best performing shares with cash from sales.stock_amounts = Buy(price_increases, cash, day_close, stock_amounts)# Increment daycurrent_day += 1# Get new day_close pricesday_close = GetPrices(portfolio_size, bigX, current_day)return stock_amounts, day_close, current_daydef Sell(portfolio_value, sell_perc, price_increases, portfolio_size, stock_amounts, day_close):'''Conducts the sale of a proportion of the stocks in the portfolio with theworst predicted next-day pricesInputs:portfolio_value: array (portfolio size * 1), calculating the total value of all stocks held in the portfolio according to the current day close pricessell_perc: float, a user input defining which proportion of the portfolio valueshould be sold at the end of each dayprice_increases: array (portfolio size * 1), calculating the predicted changesin price between the current day and the next-day prediction for each stock portfolio_size: int, the number of companies that we can trade withstock_amounts: array (portfolio size * 1), the number of stocks for each company held in the portfolio at the current dayday_close: array (portfolio size * 1), consisting of close prices for each company on the current dayreturns: cash: float, the amount of cash generated by the sale of the worst-performingstocksstock_amounts: array (portfolio size * 1), the number of stocks for each company held in the portfolio at the end of the sale'''sell_value = np.sum(portfolio_value)*sell_perccash = 0lowest = np.sort(price_increases,axis=None)for i in range(0,portfolio_size):# For each ticker, find location of lowest price in price_increases lowest_value = stock_amounts[price_increases == lowest[i]]*day_close[price_increases == lowest[i]]temp_cash = cash + lowest_valueif temp_cash < sell_value:stock_amounts[price_increases == lowest[i]] = 0cash = temp_cashelif temp_cash == sell_value:stock_amounts[price_increases == lowest[i]] = 0cash = temp_cashbreakelse:number_sold = (sell_value-cash)/day_close[price_increases == lowest[i]]stock_amounts[price_increases == lowest[i]] = stock_amounts[price_increases == lowest[i]] - number_soldnew_cash = number_sold*day_close[price_increases == lowest[i]]cash = new_cash + cashbreakreturn cash, stock_amountsdef Buy(price_increases, cash, day_close, stock_amounts):'''Purchases stocks using the cash generated by the sale of the bottom of the portfolio, with an even distribution between the top two performing stocks.Inputs:price_increases: array (portfolio size * 1), calculating the predicted changesin price between the current day and the next-day prediction for each stock cash: float, the amount of cash generated by the sale of the worst-performingstocksday_close: array (portfolio size * 1), consisting of close prices for each company on the current daystock_amounts: array (portfolio size * 1), the number of stocks for each company held in the portfolio at the end of the salereturns: stock_amounts: array (portfolio size * 1), the number of stocks for each company held in the portfolio at the end of the purchases'''best = np.sort(price_increases,axis=None)[::-1]number_bought1 = 0.5*cash/day_close[price_increases == best[0]]number_bought2 = 0.5*cash/day_close[price_increases == best[1]]    stock_amounts[price_increases == best[0]] = stock_amounts[price_increases == best[0]] + number_bought1stock_amounts[price_increases == best[1]] = stock_amounts[price_increases == best[1]] + number_bought2return stock_amountsdef DMD(X1, X2, dt):'''Conducts the DMD analysisInputs:X1: array (portfolio size * (mp-1)), the first DMD matrixX2: array (portfolio size * (mp-1)), the second DMD matrixdt: float, the time difference between snapshots of data (ie days)returns: Phi: array (portfolio size * (mp-1)), the DMD modesb: array ((mp-1) * 1), the DMD mode amplitudesomega: array ((mp-1) * 1), the DMD mode frequencies'''# SVD on X1U,S,V = np.linalg.svd(X1,full_matrices=0)Sigmar = np.diag(S)# Calculate AtildeAtilde = np.linalg.solve(Sigmar.T,(U.T @ X2 @ V.T).T).T# Eigendecomp of AtildeLambda, W = np.linalg.eig(Atilde)L = np.diag(Lambda)# DMD modesPhi = X2 @ np.linalg.solve(Sigmar.T,V).T @ W# DMD amplitudesalpha1 = Sigmar @ V[:,0]b = np.linalg.solve(W @ L,alpha1)# Frequencyomega = np.log(Lambda)/dtreturn Phi, b, omegadef DMDreconstruct(X1, t, b, omega, Phi, mp, mf):'''Conducts the DMD reconstruction in order to make a next-day price predictionInputs:X1: array (portfolio size * (mp-1)), the first DMD matrixt: list (length mp+mf), time vector used to reconstruct the data matrixb: array ((mp-1) * 1), the DMD mode amplitudesomega: array ((mp-1) * 1), the DMD mode frequenciesPhi: array (portfolio size * (mp-1)), the DMD modesmp: int, number of historical days used to build the DMD modelmf: int, number of days to predict in the future with the DMD modelreturns: price_predictions: array (portfolio size * 1), the DMD model of day close prices projected out mf day(s) into the future'''time_dynamics = np.zeros(shape=(X1.shape[1],len(t)),dtype=np.complex128)for i in range(0,len(t)):time_dynamics[:,i] = np.multiply(b,np.exp(omega*t[i]))X_dmd = Phi @ time_dynamicsprice_predictions = np.real(X_dmd[:,(mp)])return price_predictions#%% Set parameters and reduce table size
after_start_date = data['date'] >= start_date
before_end_date = data['date'] <= end_date
between_two_dates = after_start_date & before_end_datetabledates = data.loc[between_two_dates]tickers = [s1,s2,s3,s4,s5,s6,s7,s8]
portfolio_size = len(tickers)# Get retail_table in the specified date range
reduced_table = []
for i in tickers:ticker_loc = tabledates['ticker'] == ireduced_table.append(tabledates.loc[ticker_loc])retail_table = pd.concat(reduced_table)# Form the big data matrix.
# For each ticker, get all the close prices and store.
days = len(retail_table[retail_table['ticker'] == tickers[0]])
bigX = np.zeros(shape=(portfolio_size,days))
for i in range(0,portfolio_size):temp = retail_table[retail_table['ticker'] == tickers[i]]temp_price_vector =  temp['close'].values.tolist()bigX[i,:] = temp_price_vector#%% Initialise the trading
# Initialise at day 7, as DMD uses data on the previous 7 days to predict
# the price on the following day
current_day = 7# Initialise capital and date
init_each = 1e6/portfolio_size
init_day = datetime.datetime.strptime(start_date,'%Y-%m-%d') + datetime.timedelta(days = (mp-1))day_close = GetPrices(portfolio_size, bigX, current_day)# Evenly distribute stock
stock_amounts = np.zeros(shape=(portfolio_size,1))
for i in range(0,portfolio_size):stock_amounts[i,0] = init_each/day_close[i]#%% The trading
# Initialise portfolio value over time
valuet = np.zeros(shape=(1,days))# Trade
for i in range(0,days-mp-1):stock_amounts, day_close, current_day = Trade(current_day, mp, mf, bigX, portfolio_size, stock_amounts, day_close, sell_perc);# Calculate value of portfolio and store in valuetvalue = np.sum(stock_amounts*day_close)valuet[0,i] = value#%% Load S&P data
SP = pd.read_csv('S&Pretail_reduced.csv')#%% Average returns
returnDMD = valuet[0,0:days-(mp+mf)] - 1e6
avreturnDMD = np.mean(returnDMD)
returnSP = SP['close'][0:days-(mp+mf)] - 1e6
avreturnSP = np.mean(returnSP)
DMDperformance = avreturnDMD/avreturnSP
print('DMD produces average returns of',round(DMDperformance,1),'times the S&P index.')#%% Plot
axdates = pd.to_datetime(SP['date'][0:days-(mp+mf)],dayfirst=True)plt.figure()
mpl.rc('font',family='Times New Roman')
plt.plot(axdates,valuet[0,0:days-(mp+mf)]/1e6,linewidth=3,color="#0072BD")
plt.plot(axdates,SP['close'][0:days-(mp+mf)]/1e6,linewidth=3,color="#7E2F8E")
plt.ylabel('USD (millions)',fontsize=20)
plt.legend(['DMD Algorithm','S&P Retail Index'],)
plt.grid()
plt.show()

图片

知乎学术咨询:

哥廷根数学学派 - 知乎

工学博士,担任《Mechanical System and Signal Processing》,《中国电机工程学报》等期刊审稿专家,擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

这篇关于Python环境下基于动态模态分解的股票价格预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/908310

相关文章

Python中@classmethod和@staticmethod的区别

《Python中@classmethod和@staticmethod的区别》本文主要介绍了Python中@classmethod和@staticmethod的区别,文中通过示例代码介绍的非常详细,对大... 目录1.@classmethod2.@staticmethod3.例子1.@classmethod

Python手搓邮件发送客户端

《Python手搓邮件发送客户端》这篇文章主要为大家详细介绍了如何使用Python手搓邮件发送客户端,支持发送邮件,附件,定时发送以及个性化邮件正文,感兴趣的可以了解下... 目录1. 简介2.主要功能2.1.邮件发送功能2.2.个性签名功能2.3.定时发送功能2. 4.附件管理2.5.配置加载功能2.6.

使用Python进行文件读写操作的基本方法

《使用Python进行文件读写操作的基本方法》今天的内容来介绍Python中进行文件读写操作的方法,这在学习Python时是必不可少的技术点,希望可以帮助到正在学习python的小伙伴,以下是Pyth... 目录一、文件读取:二、文件写入:三、文件追加:四、文件读写的二进制模式:五、使用 json 模块读写

Python使用qrcode库实现生成二维码的操作指南

《Python使用qrcode库实现生成二维码的操作指南》二维码是一种广泛使用的二维条码,因其高效的数据存储能力和易于扫描的特点,广泛应用于支付、身份验证、营销推广等领域,Pythonqrcode库是... 目录一、安装 python qrcode 库二、基本使用方法1. 生成简单二维码2. 生成带 Log

Python如何使用seleniumwire接管Chrome查看控制台中参数

《Python如何使用seleniumwire接管Chrome查看控制台中参数》文章介绍了如何使用Python的seleniumwire库来接管Chrome浏览器,并通过控制台查看接口参数,本文给大家... 1、cmd打开控制台,启动谷歌并制定端口号,找不到文件的加环境变量chrome.exe --rem

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.

Java中的Opencv简介与开发环境部署方法

《Java中的Opencv简介与开发环境部署方法》OpenCV是一个开源的计算机视觉和图像处理库,提供了丰富的图像处理算法和工具,它支持多种图像处理和计算机视觉算法,可以用于物体识别与跟踪、图像分割与... 目录1.Opencv简介Opencv的应用2.Java使用OpenCV进行图像操作opencv安装j

使用Python将长图片分割为若干张小图片

《使用Python将长图片分割为若干张小图片》这篇文章主要为大家详细介绍了如何使用Python将长图片分割为若干张小图片,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果1. Python需求

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da

Python视频处理库VidGear使用小结

《Python视频处理库VidGear使用小结》VidGear是一个高性能的Python视频处理库,本文主要介绍了Python视频处理库VidGear使用小结,文中通过示例代码介绍的非常详细,对大家的... 目录一、VidGear的安装二、VidGear的主要功能三、VidGear的使用示例四、VidGea