本文主要是介绍高精度算法之加 减 乘 除 阶乘和,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
如果是寻找高精度(大整数)类,请转移到
https://blog.csdn.net/tomjobs/article/details/99988413 或
https://blog.csdn.net/tomjobs/article/details/101856803
这里只是简单的数组模拟,巩固一下基础。
高精度加法:直接一位一位的加就好了,大于10就进到下一位
#include <cstdio>
#include <algorithm>
#include <cstring>using namespace std;char a1[1005],b1[1005];
char a[1005],b[1005];
int c[1005];int main()
{scanf("%s%s",a1 + 1,b1 + 1);int len1 = (int)strlen(a1 + 1),len2 = (int)strlen(b1 + 1);for(int i = 1;i <= len1;i++){a[i] = a1[len1 - i + 1] - '0';}for(int i = 1;i <= len2;i++){b[i] = b1[len2 - i + 1] - '0';}int len = max(len1,len2);for(int i = 1;i <= len;i++){c[i] += a[i] + b[i];c[i + 1] += c[i] / 10;c[i] %= 10;}if(c[len + 1])len++;for(int i = len;i >= 1;i--)printf("%d",c[i]);return 0;
}
高精度减法:首先比较大小(位数,同位则比较同位置的大小)
如果被减数小于减数就交换,并且输出一个负号。
实际操作的时候进行借位,要是a[i] < b[i],那么a[i]加10,下一位减一。
#include <cstdio>
#include <cstring>
#include <algorithm>using namespace std;const int maxn = 100005;
char s1[maxn],s2[maxn];
int a1[maxn],a2[maxn];bool cmp(int a[],int b[])
{if(a[0] > b[0])return 1;if(a[0] < b[0])return 0;for(int i = 1;i <= a[0];i++){if(a[i] < b[i])return 0;if(a[i] > b[i])return 1;}return 1;
}int main()
{scanf("%s%s",s1 + 1,s2 + 1);int len1 = (int)strlen(s1 + 1),len2 = (int)strlen(s2 + 1);for(int i = 1;i <= len1;i++){a1[i] = s1[len1 - i + 1] - '0';}for(int i = 1;i <= len2;i++){a2[i] = s2[len2 - i + 1] - '0';}a1[0] = len1;a2[0] = len2;int flag = 0;if(!cmp(a1,a2)){flag = 1;swap(a1,a2);}for(int i = 1;i <= len1;i++){if(a1[i] < a2[i]){a1[i] += 10;a1[i + 1]--;}a1[i] -= a2[i];}while(a1[a1[0]] == 0 && a1[0] > 1){a1[0]--;}if(flag)printf("-");for(int i = a1[0];i >= 1;i--)printf("%d",a1[i]);
}
高精度乘法:一位一位的乘,并且赋值到第i + j - 1位上。
#include <cstdio>
#include <cstring>
#include <algorithm>using namespace std;const int maxn = 100005;
char s1[maxn],s2[maxn];
int a1[maxn],a2[maxn],a[maxn];
int main()
{scanf("%s%s",s1 + 1,s2 + 1);int len1 = (int)strlen(s1 + 1),len2 = (int)strlen(s2 + 1);for(int i = 1;i <= len1;i++){a1[i] = s1[len1 - i + 1] - '0';}for(int i = 1;i <= len2;i++){a2[i] = s2[len2 - i + 1] - '0';}a1[0] = len1;a2[0] = len2;int len = len1 + len2;for(int i = 1;i <= len1;i++){for(int j = 1;j <= len2;j++){int m = i + j - 1;a[m] += a1[i] * a2[j];a[m + 1] += a[m] / 10;a[m] %= 10;}}while(len > 1 && a[len] == 0)len--;for(int i = len;i >= 1;i--)printf("%d",a[i]);return 0;
}
高精度除法:本质上还是模拟减法。
一个一个减就太废了,减多少个,可以二分处理。
也可以类似“倍增“,减去b的10次幂,先a - k1 * b * 1000 ,
再a - k2 * b * 100, a - k3 * b * 10…
#include <cstdio>
#include <cstring>
#include <algorithm>using namespace std;const int maxn = 1005;
char s1[maxn],s2[maxn];
int a1[maxn],a2[maxn],a3[maxn],a4[maxn];bool cmp(int a[],int b[])
{if(a[0] > b[0])return 1;if(a[0] < b[0])return 0;for(int i = a[0];i >= 1;i--){if(a[i] > b[i])return 1;if(a[i] < b[i])return 0;}return 1;
}void minu(int a[],int b[])
{for(int i = 1;i <= a[0];i++){if(a[i] < b[i]){a[i] += 10;a[i + 1]--;}a[i] -= b[i];}while(a[a[0]] == 0 && a[0] > 1){a[0]--;}
}int main()
{scanf("%s%s",s1 + 1,s2 + 1);int len1 = (int)strlen(s1 + 1),len2 = (int)strlen(s2 + 1);for(int i = 1;i <= len1;i++)a1[i] = s1[len1 - i + 1] - '0';a1[0] = len1;for(int i = 1;i <= len2;i++)a2[i] = s2[len2 - i + 1] - '0';a2[0] = len2;a4[0] = len1 - len2 + 1;for(int i = a4[0];i >= 1;i--){memset(a3,0,sizeof(a3));for(int j = 1;j <= a2[0];j++)a3[j + i - 1] = a2[j];a3[0] = a2[0] + i - 1;while(cmp(a1,a3)){a4[i]++;minu(a1,a3);}}while(a4[a4[0]] == 0 && a4[0] > 1){a4[0]--;}for(int i = a4[0];i >= 1;i--)printf("%d",a4[i]);return 0;
}
高精度阶乘和
#include <cstdio>
#include <cstring>
#include <algorithm>using namespace std;const int maxn = 100005;int sum[maxn],fac[maxn];
int main()
{fac[1] = 1;fac[0] = 1;int n;scanf("%d",&n);for(int i = 1;i <= n;i++){int carry = 0;for(int j = 1;j <= fac[0];j++){fac[j] *= i;fac[j] += carry;carry = fac[j] / 10;fac[j] %= 10;}if(carry)fac[++fac[0]] = carry;for(int j = 1;j <= fac[0];j++){sum[j] += fac[j];sum[j + 1] += sum[j] / 10;sum[j] %= 10;}if(sum[sum[0] + 1])sum[0]++;}for(int i = sum[0];i >= 1;i--)printf("%d",sum[i]);return 0;
}
这篇关于高精度算法之加 减 乘 除 阶乘和的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!