代码随想录刷题day53|最长公共子序列不相交的线最大子序和

本文主要是介绍代码随想录刷题day53|最长公共子序列不相交的线最大子序和,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • day53学习内容
  • 一、最长公共子序列
    • 1.1、动态规划五部曲
      • 1.1.1、 确定dp数组(dp table)以及下标的含义
      • 1.1.2、确定递推公式
      • 1.1.3、 dp数组如何初始化
      • 1.1.4、确定遍历顺序
      • 1.1.5、输出结果
    • 1.2、代码
  • 二、不相交的线
    • 2.1、动态规划五部曲
      • 2.1.1、 确定dp数组(dp table)以及下标的含义
      • 2.1.2、确定递推公式
      • 2.1.3、 dp数组如何初始化
      • 2.1.4、确定遍历顺序
      • 2.1.5、输出结果
    • 2.2、代码
  • 三、最大子序和
    • 3.1、动态规划五部曲
      • 3.1.1、 确定dp数组(dp table)以及下标的含义
      • 3.1.2、确定递推公式
      • 3.1.3、 dp数组如何初始化
      • 3.1.4、确定遍历顺序
      • 3.1.5、输出结果
    • 3.2、代码
  • 总结
    • 1.感想
    • 2.思维导图


day53学习内容

day53主要内容

  • 最长公共子序列
  • 不相交的线
  • 最大子序和

声明
本文思路和文字,引用自《代码随想录》


一、最长公共子序列

1143.原题链接

1.1、动态规划五部曲

1.1.1、 确定dp数组(dp table)以及下标的含义

  • dp[i][j] 表示字符串 text1 的前 i 个字符和字符串 text2 的前 j 个字符的最长公共子序列的长度。

1.1.2、确定递推公式

基本思路
我们可以根据两个字符串中当前字符是否相等,采取不同的策略来更新 dp 表。
与最长公共子数组(或子串)不同,子序列不要求元素在原字符串中是连续的,只要求它们保持相对顺序即可。

推导状态转移方程

  1. 字符匹配的情况
    text1[i-1] == text2[j-1] 时,这意味着这两个字符可以成为目前为止考虑的字符串的公共子序列的一部分。因此,这两个字符将增加公共子序列的长度,即
dp[i][j]=dp[i−1][j−1]+1

这个方程表明,text1 的前 i 个字符和 text2 的前 j 个字符的最长公共子序列可以通过在它们的前 i-1 个字符和前 j-1 个字符的最长公共子序列的基础上添加这两个匹配的字符来得到。

  1. 字符不匹配的情况
    text1[i-1] != text2[j-1] 时,最长公共子序列不能同时包括这两个字符。因此,有以下两种可能性:
    • 忽略 text1 的当前字符 i-1,只考虑 text1 的前 i-1 个字符和 text2 的前 j 个字符。
    • 忽略 text2 的当前字符 j-1,只考虑 text1 的前 i 个字符和 text2 的前 j-1 个字符。
      这两种情况下的最长公共子序列的长度将是:
dp[i][j]=max(dp[i−1][j],dp[i][j−1])

这个方程表明,当前的 dp[i][j] 应取前面两种情况中更长的子序列长度。

1.1.3、 dp数组如何初始化

  • dp[0][x]dp[x][0] 应该初始化为 0,因为一个长度为 0 的字符串与任何字符串的最长公共子序列长度都是 0。
  • 或者这句话看不懂,就画个图。。。看一下推导的方向就明白了
    在这里插入图片描述
    图引用自卡尔的视频。

https://www.bilibili.com/video/BV1ye4y1L7CQ/?spm_id_from=pageDriver&vd_source=266f115062b99cd2d8e5185add0b8cc9

1.1.4、确定遍历顺序

从小到大遍历

1.1.5、输出结果

  • return dp[text1.length()][text2.length()]; 最后,dp 数组的最后一个元素(即 dp[text1.length()][text2.length()])包含了整个 text1text2 的最长公共子序列的长度。

1.2、代码

class Solution {public int longestCommonSubsequence(String text1, String text2) {// 创建二维数组dp,大小为text1长度+1和text2长度+1int[][] dp = new int[text1.length() + 1][text2.length() + 1];// 遍历text1的每一个字符for (int i = 1; i <= text1.length(); i++) {char char1 = text1.charAt(i - 1); // 获取text1的第i-1个字符// 遍历text2的每一个字符for (int j = 1; j <= text2.length(); j++) {char char2 = text2.charAt(j - 1); // 获取text2的第j-1个字符// 如果两个字符相同if (char1 == char2) {// 如果当前的两个字符相同,则当前dp[i][j]应基于之前的dp[i-1][j-1]的值加1dp[i][j] = dp[i - 1][j - 1] + 1;} else {// 如果两个字符不同,选择之前两种情况的较大者作为当前dp[i][j]的值dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);}}}// 返回数组的最后一个元素,即为text1和text2的最长公共子序列长度return dp[text1.length()][text2.length()];}
}

二、不相交的线

1035.原题链接

它实质上和最长公共子序列(LCS)问题相同,只是在不同的上下文中应用。在这个问题中,我们要在两个数组中找到最多的对应数字(或线),使得这些数字的顺序在两个数组中保持一致,但不必连续。

2.1、动态规划五部曲

2.1.1、 确定dp数组(dp table)以及下标的含义

  • 其中 dp[i][j] 代表考虑 nums1 的前 i 个元素和 nums2 的前 j 个元素时的最大不相交线数(或最长公共子序列的长度)。

2.1.2、确定递推公式

  • for (int i = 1; i <= len1; i++):外层循环遍历 nums1
  • for (int j = 1; j <= len2; j++):内层循环遍历 nums2
    • if (nums1[i - 1] == nums2[j - 1]):如果当前考虑的两个元素相等,表示可以在此基础上形成一个新的对应线,所以 dp[i][j] = dp[i - 1][j - 1] + 1;。这意味着我们在之前的最大对应线数的基础上增加一条新的线。
    • else:如果当前的两个元素不相等,则我们需要决定是跳过 nums1 的当前元素还是 nums2 的当前元素,以保持最大的对应线数。因此,dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]); 选择这两种情况中较大的一个。

2.1.3、 dp数组如何初始化

根据前面的分析。dp 表的最后一个元素就是两个数组中可以形成的最大不相交线数,这等同于最长公共子序列的长度。所以初始化逻辑和上面那题是一样的,这里不再赘述了。

2.1.4、确定遍历顺序

从小到大遍历

2.1.5、输出结果

  • return dp[len1][len2]; 动态规划表的最后一个元素包含了整个 nums1nums2 可以形成的最大不相交线数。

2.2、代码

class Solution {// maxUncrossedLines 方法用来计算两个数组间的最大未交叉线数public int maxUncrossedLines(int[] nums1, int[] nums2) {// len1 和 len2 分别是两个数组的长度int len1 = nums1.length;int len2 = nums2.length;// dp 数组用于存储动态规划的中间结果int[][] dp = new int[len1 + 1][len2 + 1];// 外层循环遍历 nums1for (int i = 1; i <= len1; i++) {// 内层循环遍历 nums2for (int j = 1; j <= len2; j++) {// 如果当前两个数组的元素相等,更新 dp 数组的值if (nums1[i - 1] == nums2[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + 1;} else {// 如果不相等,取两种情况的较大值,即不包含当前 nums1 的元素或不包含当前 nums2 的元素dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);}}}// 返回 dp 数组右下角的值,即为最大未交叉线数return dp[len1][len2];}
}

三、最大子序和

53.原题链接

3.1、动态规划五部曲

3.1.1、 确定dp数组(dp table)以及下标的含义

  • dp[i] 表示以第 i 个元素结尾的最大子数组和。

3.1.2、确定递推公式

  • 从数组的第二个元素开始遍历(即i=1)。
  • 对于每个元素nums[i],更新dp[i]。这里的转移方程是:
    • dp[i] = Math.max(dp[i-1] + nums[i], nums[i])
    • 这个方程的意思是,考虑到第i个元素时,最大子数组和可以是:
      • dp[i-1] + nums[i](即包含之前的最大子数组和再加上当前元素nums[i]),或者
      • nums[i]本身(即从新开始计数,只取当前元素,这种情况适用于dp[i-1]是负数,不如放弃之前的累计,重新开始)。
  • 同时更新结果res,如果dp[i]比当前的res还要大,就用dp[i]更新res

3.1.3、 dp数组如何初始化

dp[0]即为nums[0],因为第一个元素前面没有其他元素,所以它自身就是一个子数组。

3.1.4、确定遍历顺序

从小到大遍历

3.1.5、输出结果

最后返回 res,它存储的是整个数组的最大子数组和。

3.2、代码

class Solution {public int maxSubArray(int[] nums) {// 如果数组为空,则直接返回0(通常情况下,这里可以根据题意返回负无穷或抛出异常)if (nums.length == 0) {return 0;}// res用来存储最终的最大子数组和,初值设为数组的第一个元素int res = nums[0];// dp数组用于动态规划存储到当前元素为止的最大子数组和,dp[0]自然是第一个元素int[] dp = new int[nums.length];dp[0] = nums[0];// 从数组的第二个元素开始遍历for (int i = 1; i < nums.length; i++) {// 动态规划的转移方程:比较“继续当前子数组”与“从新的位置开始”dp[i] = Math.max(dp[i - 1] + nums[i], nums[i]);// 更新全局的最大子数组和res = Math.max(res, dp[i]);}// 返回计算得到的最大子数组和return res;}
}

总结

1.感想

  • 补周六的进度,冲

2.思维导图

本文思路引用自代码随想录,感谢代码随想录作者。

这篇关于代码随想录刷题day53|最长公共子序列不相交的线最大子序和的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/907372

相关文章

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时