本文主要是介绍2019湖南省赛 C.Distinct Substrings(哈希+二分,扩展KMP),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
思路:
串的最后加上i以后,实际上加上了 n + 1 n+1 n+1个串,我们要减去重复的子串个数。
假设串加上 i i i后,对于长度为 m i d mid mid的后缀发生重复,那么对于长度为 1... m i d − 1 1...mid-1 1...mid−1的后缀也会发生重复,所以要判断有 m i d mid mid个重复子串,实际就是判断新串长度为 m i d mid mid的后缀和旧串某个长度为 m i d mid mid的后缀发生重复。这个过程具有单调性,所以可
以哈希+二分写。
判断长度为 m i d mid mid,且以 i i i为结尾的后缀是否在原串中发生重复,除了用哈希,还要对每个数建立个邻接表定位其出现的位置,以此减少复杂度。
u p d : upd: upd:
按照上面的解法,实质上是求新串与旧串某个前缀的最大公共后缀,将串反一下,问题就变成了求新串与旧串所有后缀的最大公共前缀,这就成了扩展KMP裸题了。
ps:在牛客上这题内存不稳定,算好的5e6的int数组前面几次超内存,后面再交就A了,很迷。
哈希+二分
#include <cstdio>
#include <cstring>
#include <iostream>
#include <cstdlib>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 1e6 + 7;
const int mod = 1e9 + 7;
const ll Base = 7537;
int n,m;
int head[maxn],nex[maxn];
int h[maxn],base[maxn];
int p[maxn];int get(int l,int r) {return ((h[r] - 1ll * h[l - 1] * base[r - l + 1] % mod) % mod + mod) % mod;
}bool check(int mid,int x) {int h1 = get(n + 1 - mid + 1,n + 1);for(int i = head[x];i && i >= mid;i = nex[i]) {int h2 = get(i - mid + 1,i);if(h1 == h2) return true;}return false;
}int main() {p[0] = 1;base[0] = 1;for(int i = 1;i < maxn;i++) {p[i] = 1ll * p[i - 1] * 3 % mod;base[i] = 1ll * base[i - 1] * Base % mod;}while(~scanf("%d%d",&n,&m)) {for(int i = 1;i <= m;i++) {head[i] = 0;}for(int i = 1;i <= n;i++) {int x;scanf("%d",&x);h[i] = (1ll * h[i - 1] * Base % mod + x) % mod;nex[i] = head[x];head[x] = i;}ll ans = 0;for(int i = 1;i <= m;i++) {h[n + 1] = (1ll * h[n] * Base % mod + i) % mod;int l = 0,r = n,res = 0;if(!head[i]) {res = 0;} else {while(l <= r) {int mid = (l + r) >> 1;if(check(mid,i)) {l = mid + 1;res = mid;} else {r = mid - 1;}}}ans ^= 1ll * p[i] * (n + 1 - res) % mod;}printf("%lld\n",ans);}return 0;
}
扩展KMP写法
#include <cstdio>
#include <cstring>
#include <iostream>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <vector>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 1e6 + 3;
const int mod = 1e9 + 7;
int n, m, z[maxn],p[maxn];
int a[maxn],head[maxn],nex[maxn];inline void Z() {for (int i = 1; i <= n; i++) z[i] = 0;z[1] = n;for (int i = 2, l = 0, r = 0; i <= n; i++) {if (i <= r) z[i] = min(z[i-l+1], r - i + 1);while (i + z[i] <= n && a[i+z[i]] == a[z[i]+1]) ++z[i];if (i + z[i] - 1 > r) l = i, r = i + z[i] - 1;}
}int main() {p[0] = 1;for(int i = 1;i < maxn;i++) {p[i] = 1ll * p[i - 1] * 3 % mod;}while(~scanf("%d%d",&n,&m)) {for(int i = 1;i <= m;i++) {head[i] = 0;}for(int i = 1;i <= n;i++) {scanf("%d",&a[i]);}reverse(a + 1, a + 1 + n);for(int i = 1;i <= n;i++) {nex[i] = head[a[i]];head[a[i]] = i;}Z();z[n + 1] = 0;ll ans = 0;for(int i = 1;i <= m;i++) {int now = i;int mx = 0;for(int j = head[now];j;j = nex[j]) {mx = max(mx,z[j + 1] + 1);}
// printf("%d: %d\n",i,mx);ans ^= 1ll * p[i] * (n + 1 - mx) % mod;}printf("%lld\n",ans);}return 0;
}
这篇关于2019湖南省赛 C.Distinct Substrings(哈希+二分,扩展KMP)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!