风速Weibull分布和光伏Beta分布的参数拟合方法(含matlab算例)

2024-04-15 23:12

本文主要是介绍风速Weibull分布和光伏Beta分布的参数拟合方法(含matlab算例),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在风光场景生成、随机优化调度等研究中,常常假设风速服从Weibull分布,太阳辐照度服从Beta分布。那我们如何得到两个分布的参数呢?文本首先介绍了风速Weibull分布和辐照度Beta分布的基本概率模型及其性性质,之后以MATLAB代码为例阐述了如何根据历史观测数据对两种分布的参数进行估计。

Weibull分布

风机出力的不确定性主要来源于风速固有的间歇性、随机性和波动性,学术界及工业均普遍认为风速的概率分布服从经典的两参数“Weibull分布”。风速的Weibull分布的概率密度函数(Probability Density Function, PDF)为:

 

Weibull 分布的均值与方差

  • Weibull分布的均值为:

参数估计

两种方法

  • 利用MATLAB自带的 fitdist 函数直接对历史观测数据进行拟合
% 分别对NT个时刻的风速数据进行Weibull分布拟合
% 首先要准备一个风速数据windspeed,维度为(N, NTime)
% 其中,N为样本个数,NTime为时刻数如24for i = 1 : NTimewif = fitdist(windspeed(:, i), 'weibull');k_wif(i) = wif.B;c_wif(i) = wif.A;
end
  • 利用随机变量的期望和方差计算参数:包括SDM和MOM两种
% 计算风速均值
wind_speed_avg = mean(windspeed);
% 计算风速标准差
wind_speed_std = std(windspeed);% 标准差法参数计算 standard deviation method 
k_wstdm = (wind_speed_std./wind_speed_avg).^-1.086;
c_wstdm = (wind_speed_avg)./(gamma(1+(1./k_wstdm)));% 矩量法参数计算 Method of Moments Method Factor Calculation
k_mom = (0.9874./(wind_speed_std./wind_speed_avg)).^1.0983;
c_mom = (wind_speed_avg)./(gamma(1+(1./k_mom)));

Beta分布

Beta 分布的均值与方差

  • Beta 分布的期望

 Beta 分布的方差

参数估计

两种方法

  • 利用MATLAB自带的 fitdist 函数直接对历史观测数据进行拟合
% NTime为时刻数,如24
% NS 为观测数据维度
% solardat为历史观测数据,维度为(NS, NTime)solardata = solardata / max(max(solardata)); % 因为Beta分布是定义在(0,1) 区间的连续概率分布
for i = 1 : NTimeparas = fitdist(solardata(:, i), 'beta');a(i) = paras.a;b(i) = paras.b; 
end% 会报错“如果所有数据值都相同,则不能拟合beta分布”,因为夜间出力为0,所以可以不对0拟合

 

  • 利用历史观测数据的期望和方差求出Beta的两个参数
% NTime为时刻数,如24
% NS 为观测数据维度
% solardat为历史观测数据,维度为(NS, NTime)solardata = solardata / max(max(solardata))% 计算均值
si_avg = mean(solardata);
% 计算标准差
si_std = std(solardata).^2;a = zeros(1, NTime);
b = zeros(1, NTime);
for i = 1 : NTimea(i) = si_avg(i) * ( si_avg(i) * (1 - si_avg(i))/si_std(i) - 1 );b(i)  = (1 - si_avg(i)) * ( si_avg(i) * (1 - si_avg(i))/si_std(i) - 1);
enda(isnan(a))=0;
b(isnan(b))=0;

这篇关于风速Weibull分布和光伏Beta分布的参数拟合方法(含matlab算例)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/907192

相关文章

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

SQL中redo log 刷⼊磁盘的常见方法

《SQL中redolog刷⼊磁盘的常见方法》本文主要介绍了SQL中redolog刷⼊磁盘的常见方法,将redolog刷入磁盘的方法确保了数据的持久性和一致性,下面就来具体介绍一下,感兴趣的可以了解... 目录Redo Log 刷入磁盘的方法Redo Log 刷入磁盘的过程代码示例(伪代码)在数据库系统中,r

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Java中Switch Case多个条件处理方法举例

《Java中SwitchCase多个条件处理方法举例》Java中switch语句用于根据变量值执行不同代码块,适用于多个条件的处理,:本文主要介绍Java中SwitchCase多个条件处理的相... 目录前言基本语法处理多个条件示例1:合并相同代码的多个case示例2:通过字符串合并多个case进阶用法使用

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

html5的响应式布局的方法示例详解

《html5的响应式布局的方法示例详解》:本文主要介绍了HTML5中使用媒体查询和Flexbox进行响应式布局的方法,简要介绍了CSSGrid布局的基础知识和如何实现自动换行的网格布局,详细内容请阅读本文,希望能对你有所帮助... 一 使用媒体查询响应式布局        使用的参数@media这是常用的

Spring 基于XML配置 bean管理 Bean-IOC的方法

《Spring基于XML配置bean管理Bean-IOC的方法》:本文主要介绍Spring基于XML配置bean管理Bean-IOC的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一... 目录一. spring学习的核心内容二. 基于 XML 配置 bean1. 通过类型来获取 bean2. 通过

基于Python实现读取嵌套压缩包下文件的方法

《基于Python实现读取嵌套压缩包下文件的方法》工作中遇到的问题,需要用Python实现嵌套压缩包下文件读取,本文给大家介绍了详细的解决方法,并有相关的代码示例供大家参考,需要的朋友可以参考下... 目录思路完整代码代码优化思路打开外层zip压缩包并遍历文件:使用with zipfile.ZipFil

Python处理函数调用超时的四种方法

《Python处理函数调用超时的四种方法》在实际开发过程中,我们可能会遇到一些场景,需要对函数的执行时间进行限制,例如,当一个函数执行时间过长时,可能会导致程序卡顿、资源占用过高,因此,在某些情况下,... 目录前言func-timeout1. 安装 func-timeout2. 基本用法自定义进程subp

Linux内核参数配置与验证详细指南

《Linux内核参数配置与验证详细指南》在Linux系统运维和性能优化中,内核参数(sysctl)的配置至关重要,本文主要来聊聊如何配置与验证这些Linux内核参数,希望对大家有一定的帮助... 目录1. 引言2. 内核参数的作用3. 如何设置内核参数3.1 临时设置(重启失效)3.2 永久设置(重启仍生效