ERA5再分析资料下载和处理成红黑图教程

2024-04-15 18:44

本文主要是介绍ERA5再分析资料下载和处理成红黑图教程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ERA5再分析资料下载和处理教程

1.下载官网:

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=form

下载之前需要注册网站的账号认证
选择需要的要素时间气压等要素,注意最后下载的数据格式是grib还是nc格式
在这里插入图片描述
保存为netcdf格式
在这里插入图片描述
ERA5再分析资料的温度使用工具看到
在这里插入图片描述## python处理数据
nc数据基本信息的读取查看

ds = xr.open_dataset('xxxx.nc')  #使用xarray包打开nc数据
print(ds.variables.keys())   # 打印数据的变量信息
time_dim = ds.coords['time']  # 获取时间维度
lon = ds['longitude'].values  # 获取经度列表值
lat = ds['latitude'].values  #获取维度列表的值
data = ds.sel(time=t)   # 获取t这一特定时间的数据
data = data['t'].values   #获取温度的值

我们得到数据后将数据存储到红黑图,保证数据交互的方便,存储小
在这里插入图片描述

# # 垂直翻转数组【根据获取的数组实际旋转】# data = np.flipud(data)minValue = np.nanmin(data)maxValue = np.nanmax(data)# 用计算的最大小值来拉伸fix = (maxValue - minValue) / 256# var2Data[np.isnan(var2Data)] = 0# var3Data = var3Data.to_masked_array()# var3Data[np.isinf(var3Data)] = np.nanvar3Data = np.nan_to_num(data, nan=0)  # 无效值转换为0var3Data[var3Data < minValue] = minValuevar3Data = (var3Data - minValue) / fixvar3Data = np.uint8(var3Data)# 利用拉伸后的数据创建图片的RGB通道ir = Image.fromarray(var3Data[:]) # 写入值ig = Image.fromarray(np.array(np.zeros(var3Data.shape), np.uint8)).convert('L')ib = Image.fromarray(np.array(np.zeros(var3Data.shape), np.uint8)).convert('L')imjpg = Image.merge('RGB', (ir, ig, ib))flipped_img = imjpg.transpose(method=Image.FLIP_TOP_BOTTOM)directory_path11 = os.path.dirname(file_path)directory_path = os.path.dirname(directory_path11) + '\\' + 'era5' + '\\' + element + '\\' + stimeif not os.path.exists(directory_path):  # 如果路径不存在os.makedirs(directory_path)  # 则创建该目录pngfile = directory_path + '\\' + element + '_' + stime + '.png'flipped_img.save(pngfile, 'png')   #保存为png

在我们交互的同时定义相对应的json文件,方便前端的渲染

这篇关于ERA5再分析资料下载和处理成红黑图教程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/906617

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

基于C#实现PDF转图片的详细教程

《基于C#实现PDF转图片的详细教程》在数字化办公场景中,PDF文件的可视化处理需求日益增长,本文将围绕Spire.PDFfor.NET这一工具,详解如何通过C#将PDF转换为JPG、PNG等主流图片... 目录引言一、组件部署二、快速入门:PDF 转图片的核心 C# 代码三、分辨率设置 - 清晰度的决定因

Python自动化处理PDF文档的操作完整指南

《Python自动化处理PDF文档的操作完整指南》在办公自动化中,PDF文档处理是一项常见需求,本文将介绍如何使用Python实现PDF文档的自动化处理,感兴趣的小伙伴可以跟随小编一起学习一下... 目录使用pymupdf读写PDF文件基本概念安装pymupdf提取文本内容提取图像添加水印使用pdfplum

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则