Python3实现单级库存仿真,single echelon inventory assessment

本文主要是介绍Python3实现单级库存仿真,single echelon inventory assessment,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考代码的来源:
https://github.com/anshul-musing/single-echelon-inventory-assessment/blob/master/src/simpy_3.0/simLostSales.py

src/simpy_3.0/simBackorder.py

这段代码主要模拟单级供应链,所考虑的库存参数为在途库存、库存水平、服务水平。
假设这个系统采用的是“一旦库存水平低于再订货点(固定),管理者立即下订单(固定)”的订货策略。
假设当前未被满足的订单允许被后期的补货满足,
基于订单有多晚被满足 ,计算服务水平。
假设需求服从正态分布、提前期服从均匀分布。

"""This module simulates a single-echelon supply chain
and calculates inventory profile (along with associated inventory
parameters such as on-hand, inventory position, service level, etc.)
across timeThe system follows a reorder point-reorder quantity policy
If inventory position <= ROP, an order of a fixed reorder
quantity (ROQ) is placed by the facilityIt is assumed that any unfulfilled order is backordered
and is fulfilled whenever the material is available in the
inventory.  The service level is estimated based on how
late the order was fulfilledDemand is assumed to be Normally distributed
Lead time is assumed to follow a uniform distribution
"""__author__ = 'Anshul Agarwal'import simpy
import numpy as np# Stocking facility class
class stockingFacility(object): ## ?? why we need to in herit 'object'?# initialize the new facility objectdef __init__(self, env, initialInv, ROP, ROQ, meanDemand, demandStdDev, minLeadTime, maxLeadTime):self.env = envself.on_hand_inventory = initialInvself.inventory_position = initialInvself.ROP = ROP # inventory positionself.ROQ = ROQ # fixed order quantityself.meanDemand = meanDemandself.demandStdDev = demandStdDevself.minLeadTime = minLeadTimeself.maxLeadTime = maxLeadTimeself.totalDemand = 0.0self.totalBackOrder = 0.0self.totalLateSales = 0.0self.serviceLevel = 0.0env.process(self.runOperation())# main subroutine for facility operation# it records all stocking metrics for the facilitydef runOperation(self):while True:yield self.env.timeout(1.0)# demand newly generateddemand = float(np.random.normal(self.meanDemand, self.demandStdDev, 1))self.totalDemand += demand# shipment 是该仓库送出的量,而self.ROQ是该仓库的补货量shipment = min(demand + self.totalBackOrder, self.on_hand_inventory) # the amount of goods available to sendself.on_hand_inventory -= shipment # send the shipment to some retailerself.inventory_position -= shipmentbackorder = demand - shipment # the amount of demand unmet temporarilyself.totalBackOrder += backorderself.totalLateSales += max(0.0, backorder)# if the current inventory position is less than ROP, then place an orderif self.inventory_position <= 1.01 * self.ROP:  # multiply by 1.01 to avoid rounding issuesself.env.process(self.ship(self.ROQ))# why we revise 'self.on_hand_inv' in the method 'ship', and revise 'self.inv_position' outside 'ship'self.inventory_position += self.ROQ# subroutine for a new order placed by the facilitydef ship(self, orderQty):# recall that we assume the lead time follows an uniform distributionleadTime = int(np.random.uniform(self.minLeadTime, self.maxLeadTime, 1))yield self.env.timeout(leadTime)  # wait for the lead time before delivering# now 'orderQty' goods is receivedself.on_hand_inventory += orderQty# Simulation module
def simulateNetwork(seedinit, initialInv, ROP, ROQ, meanDemand, demandStdDev, minLeadTime, maxLeadTime):env = simpy.Environment()  # initialize SimPy simulation instancenp.random.seed(seedinit)s = stockingFacility(env, initialInv, ROP, ROQ, meanDemand, demandStdDev, minLeadTime, maxLeadTime)env.run(until=365)  # simulate for 1 years.serviceLevel = 1 - s.totalLateSales / s.totalDemand # 服务水平的定义:那些被及时满足的需求的占比return s######## Main statements to call simulation ########
meanDemand = 500.0
demandStdDev = 100.0
minLeadTime = 7
maxLeadTime = 13
CS = 5000.0
ROQ = 6000.0
ROP = max(CS,ROQ)
initialInv = ROP + ROQ# Simulate
replications = 100
sL = []
for i in range(replications):nodes = simulateNetwork(i,initialInv, ROP, ROQ, meanDemand, demandStdDev, minLeadTime, maxLeadTime)sL.append(nodes.serviceLevel)sLevel = np.array(sL)
print("Avg. service level: " + str(np.mean(sLevel)))
print("Service level standard deviation: " + str(np.std(sLevel)))

src/simpy_3.0/simLostSales.py

不同于上一小节的地方在于,这里不允许回购,而是允许发生销售损失(lost sales)。
因此,在代码实现方面也会有微妙的差别,具体如下,

  1. 在类stockingFacility中数据self.totalShipped用于记录从这个仓库发出了多少货;
  2. 在类stockingFacility的方法runOperation中,当前从该仓库的送出量shipment的计算方式不再考虑backorder;
  3. 在函数simulateNetwork中,计算服务水平(从该仓库的送出量占总需求量的比例)。
"""This module simulates a single-echelon supply chain
and calculates inventory profile (along with associated inventory
parameters such as on-hand, inventory position, service level, etc.)
across timeThe system follows a reorder point-reorder quantity policy
If inventory position <= ROP, an order of a fixed reorder
quantity (ROQ) is placed by the facilityIt is assumed that any unfulfilled order is lost
The service level is estimated based on how much
of the demand was fulfilledDemand is assumed to be Normally distributed
Lead time is assumed to follow a uniform distribution
"""__author__ = 'Anshul Agarwal'import simpy
import numpy as np# Stocking facility class
class stockingFacility(object):# initialize the new facility objectdef __init__(self, env, initialInv, ROP, ROQ, meanDemand, demandStdDev, minLeadTime, maxLeadTime):self.env = envself.on_hand_inventory = initialInvself.inventory_position = initialInvself.ROP = ROPself.ROQ = ROQself.meanDemand = meanDemandself.demandStdDev = demandStdDevself.minLeadTime = minLeadTimeself.maxLeadTime = maxLeadTimeself.totalDemand = 0.0self.totalShipped = 0.0 # !!self.serviceLevel = 0.0env.process(self.runOperation())# main subroutine for facility operation# it records all stocking metrics for the facilitydef runOperation(self):while True:yield self.env.timeout(1.0)demand = float(np.random.normal(self.meanDemand, self.demandStdDev, 1))self.totalDemand += demandshipment = min(demand, self.on_hand_inventory) # !!self.totalShipped += shipmentself.on_hand_inventory -= shipmentself.inventory_position -= shipmentif self.inventory_position <= 1.01 * self.ROP:  # multiply by 1.01 to avoid rounding issuesself.env.process(self.ship(self.ROQ))self.inventory_position += self.ROQ# subroutine for a new order placed by the facilitydef ship(self, orderQty):leadTime = int(np.random.uniform(self.minLeadTime, self.maxLeadTime, 1))yield self.env.timeout(leadTime)  # wait for the lead time before deliveringself.on_hand_inventory += orderQty# Simulation module
def simulateNetwork(seedinit, initialInv, ROP, ROQ, meanDemand, demandStdDev, minLeadTime, maxLeadTime):env = simpy.Environment()  # initialize SimPy simulation instancenp.random.seed(seedinit)s = stockingFacility(env, initialInv, ROP, ROQ, meanDemand, demandStdDev, minLeadTime, maxLeadTime)env.run(until=365)  # simulate for 1 years.serviceLevel = s.totalShipped / s.totalDemand # !!return s######## Main statements to call simulation ########
meanDemand = 500.0
demandStdDev = 100.0
minLeadTime = 7
maxLeadTime = 13
CS = 5000.0
ROQ = 6000.0
ROP = max(CS,ROQ)
initialInv = ROP + ROQ# Simulate
replications = 100
sL = []
for i in range(replications):nodes = simulateNetwork(i,initialInv, ROP, ROQ, meanDemand, demandStdDev, minLeadTime, maxLeadTime)sL.append(nodes.serviceLevel)sLevel = np.array(sL)
print("Avg. service level: " + str(np.mean(sLevel)))
print("Service level standard deviation: " + str(np.std(sLevel)))

这篇关于Python3实现单级库存仿真,single echelon inventory assessment的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/906506

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Java实现Excel与HTML互转

《Java实现Excel与HTML互转》Excel是一种电子表格格式,而HTM则是一种用于创建网页的标记语言,虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,下面我们就来看看... Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一