Python3实现单级库存仿真,single echelon inventory assessment

本文主要是介绍Python3实现单级库存仿真,single echelon inventory assessment,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考代码的来源:
https://github.com/anshul-musing/single-echelon-inventory-assessment/blob/master/src/simpy_3.0/simLostSales.py

src/simpy_3.0/simBackorder.py

这段代码主要模拟单级供应链,所考虑的库存参数为在途库存、库存水平、服务水平。
假设这个系统采用的是“一旦库存水平低于再订货点(固定),管理者立即下订单(固定)”的订货策略。
假设当前未被满足的订单允许被后期的补货满足,
基于订单有多晚被满足 ,计算服务水平。
假设需求服从正态分布、提前期服从均匀分布。

"""This module simulates a single-echelon supply chain
and calculates inventory profile (along with associated inventory
parameters such as on-hand, inventory position, service level, etc.)
across timeThe system follows a reorder point-reorder quantity policy
If inventory position <= ROP, an order of a fixed reorder
quantity (ROQ) is placed by the facilityIt is assumed that any unfulfilled order is backordered
and is fulfilled whenever the material is available in the
inventory.  The service level is estimated based on how
late the order was fulfilledDemand is assumed to be Normally distributed
Lead time is assumed to follow a uniform distribution
"""__author__ = 'Anshul Agarwal'import simpy
import numpy as np# Stocking facility class
class stockingFacility(object): ## ?? why we need to in herit 'object'?# initialize the new facility objectdef __init__(self, env, initialInv, ROP, ROQ, meanDemand, demandStdDev, minLeadTime, maxLeadTime):self.env = envself.on_hand_inventory = initialInvself.inventory_position = initialInvself.ROP = ROP # inventory positionself.ROQ = ROQ # fixed order quantityself.meanDemand = meanDemandself.demandStdDev = demandStdDevself.minLeadTime = minLeadTimeself.maxLeadTime = maxLeadTimeself.totalDemand = 0.0self.totalBackOrder = 0.0self.totalLateSales = 0.0self.serviceLevel = 0.0env.process(self.runOperation())# main subroutine for facility operation# it records all stocking metrics for the facilitydef runOperation(self):while True:yield self.env.timeout(1.0)# demand newly generateddemand = float(np.random.normal(self.meanDemand, self.demandStdDev, 1))self.totalDemand += demand# shipment 是该仓库送出的量,而self.ROQ是该仓库的补货量shipment = min(demand + self.totalBackOrder, self.on_hand_inventory) # the amount of goods available to sendself.on_hand_inventory -= shipment # send the shipment to some retailerself.inventory_position -= shipmentbackorder = demand - shipment # the amount of demand unmet temporarilyself.totalBackOrder += backorderself.totalLateSales += max(0.0, backorder)# if the current inventory position is less than ROP, then place an orderif self.inventory_position <= 1.01 * self.ROP:  # multiply by 1.01 to avoid rounding issuesself.env.process(self.ship(self.ROQ))# why we revise 'self.on_hand_inv' in the method 'ship', and revise 'self.inv_position' outside 'ship'self.inventory_position += self.ROQ# subroutine for a new order placed by the facilitydef ship(self, orderQty):# recall that we assume the lead time follows an uniform distributionleadTime = int(np.random.uniform(self.minLeadTime, self.maxLeadTime, 1))yield self.env.timeout(leadTime)  # wait for the lead time before delivering# now 'orderQty' goods is receivedself.on_hand_inventory += orderQty# Simulation module
def simulateNetwork(seedinit, initialInv, ROP, ROQ, meanDemand, demandStdDev, minLeadTime, maxLeadTime):env = simpy.Environment()  # initialize SimPy simulation instancenp.random.seed(seedinit)s = stockingFacility(env, initialInv, ROP, ROQ, meanDemand, demandStdDev, minLeadTime, maxLeadTime)env.run(until=365)  # simulate for 1 years.serviceLevel = 1 - s.totalLateSales / s.totalDemand # 服务水平的定义:那些被及时满足的需求的占比return s######## Main statements to call simulation ########
meanDemand = 500.0
demandStdDev = 100.0
minLeadTime = 7
maxLeadTime = 13
CS = 5000.0
ROQ = 6000.0
ROP = max(CS,ROQ)
initialInv = ROP + ROQ# Simulate
replications = 100
sL = []
for i in range(replications):nodes = simulateNetwork(i,initialInv, ROP, ROQ, meanDemand, demandStdDev, minLeadTime, maxLeadTime)sL.append(nodes.serviceLevel)sLevel = np.array(sL)
print("Avg. service level: " + str(np.mean(sLevel)))
print("Service level standard deviation: " + str(np.std(sLevel)))

src/simpy_3.0/simLostSales.py

不同于上一小节的地方在于,这里不允许回购,而是允许发生销售损失(lost sales)。
因此,在代码实现方面也会有微妙的差别,具体如下,

  1. 在类stockingFacility中数据self.totalShipped用于记录从这个仓库发出了多少货;
  2. 在类stockingFacility的方法runOperation中,当前从该仓库的送出量shipment的计算方式不再考虑backorder;
  3. 在函数simulateNetwork中,计算服务水平(从该仓库的送出量占总需求量的比例)。
"""This module simulates a single-echelon supply chain
and calculates inventory profile (along with associated inventory
parameters such as on-hand, inventory position, service level, etc.)
across timeThe system follows a reorder point-reorder quantity policy
If inventory position <= ROP, an order of a fixed reorder
quantity (ROQ) is placed by the facilityIt is assumed that any unfulfilled order is lost
The service level is estimated based on how much
of the demand was fulfilledDemand is assumed to be Normally distributed
Lead time is assumed to follow a uniform distribution
"""__author__ = 'Anshul Agarwal'import simpy
import numpy as np# Stocking facility class
class stockingFacility(object):# initialize the new facility objectdef __init__(self, env, initialInv, ROP, ROQ, meanDemand, demandStdDev, minLeadTime, maxLeadTime):self.env = envself.on_hand_inventory = initialInvself.inventory_position = initialInvself.ROP = ROPself.ROQ = ROQself.meanDemand = meanDemandself.demandStdDev = demandStdDevself.minLeadTime = minLeadTimeself.maxLeadTime = maxLeadTimeself.totalDemand = 0.0self.totalShipped = 0.0 # !!self.serviceLevel = 0.0env.process(self.runOperation())# main subroutine for facility operation# it records all stocking metrics for the facilitydef runOperation(self):while True:yield self.env.timeout(1.0)demand = float(np.random.normal(self.meanDemand, self.demandStdDev, 1))self.totalDemand += demandshipment = min(demand, self.on_hand_inventory) # !!self.totalShipped += shipmentself.on_hand_inventory -= shipmentself.inventory_position -= shipmentif self.inventory_position <= 1.01 * self.ROP:  # multiply by 1.01 to avoid rounding issuesself.env.process(self.ship(self.ROQ))self.inventory_position += self.ROQ# subroutine for a new order placed by the facilitydef ship(self, orderQty):leadTime = int(np.random.uniform(self.minLeadTime, self.maxLeadTime, 1))yield self.env.timeout(leadTime)  # wait for the lead time before deliveringself.on_hand_inventory += orderQty# Simulation module
def simulateNetwork(seedinit, initialInv, ROP, ROQ, meanDemand, demandStdDev, minLeadTime, maxLeadTime):env = simpy.Environment()  # initialize SimPy simulation instancenp.random.seed(seedinit)s = stockingFacility(env, initialInv, ROP, ROQ, meanDemand, demandStdDev, minLeadTime, maxLeadTime)env.run(until=365)  # simulate for 1 years.serviceLevel = s.totalShipped / s.totalDemand # !!return s######## Main statements to call simulation ########
meanDemand = 500.0
demandStdDev = 100.0
minLeadTime = 7
maxLeadTime = 13
CS = 5000.0
ROQ = 6000.0
ROP = max(CS,ROQ)
initialInv = ROP + ROQ# Simulate
replications = 100
sL = []
for i in range(replications):nodes = simulateNetwork(i,initialInv, ROP, ROQ, meanDemand, demandStdDev, minLeadTime, maxLeadTime)sL.append(nodes.serviceLevel)sLevel = np.array(sL)
print("Avg. service level: " + str(np.mean(sLevel)))
print("Service level standard deviation: " + str(np.std(sLevel)))

这篇关于Python3实现单级库存仿真,single echelon inventory assessment的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/906506

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、