ERROR: Could not find a version that satisfies the requirement tensorflow (from versions: none)

本文主要是介绍ERROR: Could not find a version that satisfies the requirement tensorflow (from versions: none),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

安装tensorflow报这个错,因为未指定tensorflow的版本。

解决方案:

pip install tensorflow==1.9

为了下载的快一点可以加上国内镜像的链接,加在上面这句命令后面。

-i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com

最后成功安装

解决下述代码的keras找不到报错的问题:

from tensorflow import keras

注意:因为tensorflow版本不一样,所以这句话有好多写法,如1.9的:

from tensorflow.keras.layers import Dense

 1.3的:

from tensorflow.contrib import keras  # This works on tensorflow 1.3

总之找到好多都没用,还是要换版本哇,不要用pycharm里面太低的版本,我跟着网上的教程装了Anaconda也不太管用,而且也挺坑的。

如果你也用的是Anaconda,那在terminal里直接pip install是默认下载到如我这里的最后一个路径,但是如果自己又用的虚拟环境那就有点尴尬了。所以也要注意一下。

 

 

来一段我跑成功的代码:(下载数据集可能需要点时间)

import tensorflow as tf
from tensorflow import keras
import numpy as npfrom matplotlib import pyplot as plt# print(tf.__version__)
#class name
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat','Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
#get data
fashion_mnist = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
#First processing
#show src pic
# plt.figure()
# # plt.imshow(train_images[0])
# # plt.colorbar()
# # plt.grid(False)
# # plt.show()
#processing
train_images = train_images / 255.0
test_images = test_images / 255.0#training 25 pic
plt.figure(figsize=(10,10))
for i in range(25):plt.subplot(5,5,i+1)plt.xticks([])plt.yticks([])plt.grid(False)plt.imshow(train_images[i], cmap=plt.cm.binary)plt.xlabel(class_names[train_labels[i]])
#neural model
model = keras.Sequential([keras.layers.Flatten(input_shape=(28, 28)),keras.layers.Dense(128, activation=tf.nn.relu),keras.layers.Dense(10, activation=tf.nn.softmax)
])model.compile(optimizer=tf.train.AdamOptimizer(),loss='sparse_categorical_crossentropy',metrics=['accuracy'])
#model fit
model.fit(train_images, train_labels, epochs=5)#test accuracy
# test_loss, test_acc = model.evaluate(test_images, test_labels)
# print('Test accuracy:', test_acc)#predict model
predictions = model.predict(test_images)
def plot_image(i, predictions_array, true_label, img):predictions_array, true_label, img = predictions_array[i], true_label[i], img[i]plt.grid(False)plt.xticks([])plt.yticks([])plt.imshow(img, cmap=plt.cm.binary)predicted_label = np.argmax(predictions_array)if predicted_label == true_label:color = 'blue'else:color = 'red'plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label],100*np.max(predictions_array),class_names[true_label]),color=color)def plot_value_array(i, predictions_array, true_label):predictions_array, true_label = predictions_array[i], true_label[i]plt.grid(False)plt.xticks([])plt.yticks([])thisplot = plt.bar(range(10), predictions_array, color="#777777")plt.ylim([0, 1])predicted_label = np.argmax(predictions_array)thisplot[predicted_label].set_color('red')thisplot[true_label].set_color('blue')#predict data
i = 0
plt.figure(figsize=(6,3))
plt.subplot(1,2,1)
plot_image(i, predictions, test_labels, test_images)
plt.subplot(1,2,2)
plot_value_array(i, predictions,  test_labels)
plt.show()i = 12
plt.figure(figsize=(6,3))
plt.subplot(1,2,1)
plot_image(i, predictions, test_labels, test_images)
plt.subplot(1,2,2)
plot_value_array(i, predictions,  test_labels)
plt.show()

 

这篇关于ERROR: Could not find a version that satisfies the requirement tensorflow (from versions: none)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/905456

相关文章

Maven创建项目中的groupId, artifactId, 和 version的意思

文章目录 groupIdartifactIdversionname groupId 定义:groupId 是 Maven 项目坐标的第一个部分,它通常表示项目的组织或公司的域名反转写法。例如,如果你为公司 example.com 开发软件,groupId 可能是 com.example。作用:groupId 被用来组织和分组相关的 Maven artifacts,这样可以避免

Caused by: org.hibernate.MappingException: Could not determine type for: org.cgh.ssh.pojo.GoodsType,

MappingException:这个主要是类映射上的异常,Could not determine type for: org.cgh.ssh.pojo.GoodsType,这句话表示GoodsType这个类没有被映射到

编译linux内核出现 arm-eabi-gcc: error: : No such file or directory

external/e2fsprogs/lib/ext2fs/tdb.c:673:29: warning: comparison between : In function 'max2165_set_params': -。。。。。。。。。。。。。。。。。。 。。。。。。。。。。。。。 。。。。。。。。 host asm: libdvm <= dalvik/vm/mterp/out/Inte

Jenkins 通过 Version Number Plugin 自动生成和管理构建的版本号

步骤 1:安装 Version Number Plugin 登录 Jenkins 的管理界面。进入 “Manage Jenkins” -> “Manage Plugins”。在 “Available” 选项卡中搜索 “Version Number Plugin”。选中并安装插件,完成后可能需要重启 Jenkins。 步骤 2:配置版本号生成 打开项目配置页面。在下方找到 “Build Env

收藏:解决 pip install 出现 error: subprocess-exited-with-error 错误的方法

在使用 pip 安装 Python 包时,有时候会遇到 error: subprocess-exited-with-error 错误。这种错误通常是由于 setuptools 版本问题引起的。本文将介绍如何解决这一问题 当你使用 pip install 安装某个 Python 包时,如果 setuptools 版本过高或过低,可能会导致安装过程出错,并出现类似以下错误信息:error: subpr

Nn criterions don’t compute the gradient w.r.t. targets error「pytorch」 (debug笔记)

Nn criterions don’t compute the gradient w.r.t. targets error「pytorch」 ##一、 缘由及解决方法 把这个pytorch-ddpg|github搬到jupyter notebook上运行时,出现错误Nn criterions don’t compute the gradient w.r.t. targets error。注:我用

src/pyaudio/device_api.c:9:10: fatal error: portaudio.h: 没有那个文件或目录

(venv) shgbitai@shgbitai-C9X299-PGF:~/pythonworkspace/ai-accompany$ pip install pyaudio sounddeviceCollecting pyaudioDownloading PyAudio-0.2.14.tar.gz (47 kB)━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Learn ComputeShader 09 Night version lenses

这次将要制作一个类似夜视仪的效果 第一步就是要降低图像的分辨率, 这只需要将id.xy除上一个数字然后再乘上这个数字 可以根据下图理解,很明显通过这个操作在多个像素显示了相同的颜色,并且很多像素颜色被丢失了,自然就会有降低分辨率的效果 效果: 但是这样图像太锐利了,我们加入噪声去解决这个问题 [numthreads(8, 8, 1)]void CSMain(uint3 id

win10不用anaconda安装tensorflow-cpu并导入pycharm

记录一下防止忘了 一、前提:已经安装了python3.6.4,想用tensorflow的包 二、在pycharm中File-Settings-Project Interpreter点“+”号导入很慢,所以直接在cmd中使用 pip install -i https://mirrors.aliyun.com/pypi/simple tensorflow-cpu下载好,默认下载的tensorflow

MongoDB学习—(6)MongoDB的find查询比较符

首先,先通过以下函数向BookList集合中插入10000条数据 function insertN(obj,n){var i=0;while(i<n){obj.insert({id:i,name:"bookNumber"+i,publishTime:i+2000})i++;}}var BookList=db.getCollection("BookList")调用函数,这样,BookList