基于深度学习的花卉检测系统(含PyQt界面)

2024-04-15 07:04

本文主要是介绍基于深度学习的花卉检测系统(含PyQt界面),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于深度学习的花卉检测系统(含PyQt界面)

  • 前言
  • 一、数据集
    • 1.1 数据集介绍
    • 1.2 数据预处理
  • 二、模型搭建
  • 三、训练与测试
    • 3.1 模型训练
    • 3.2 模型测试
  • 四、PyQt界面实现
  • 参考资料

前言

本项目是基于swin_transformer深度学习网络模型的花卉检测系统,目前能够检测daisy、dandelion、roses、sunflowers、tulips五类花卉,可以自己添加花卉种类进行训练。本文将详述数据集处理、模型构建、训练代码、以及基于PyQt5的应用界面设计。在应用中可以对花卉的图片进行识别,输出花卉的类别和模型对其预测结果的置信度。本文附带了完整的应用界面设计、深度学习模型代码和训练数据集的下载链接。

完整资源下载链接:博主在面包多网站上的完整资源下载页

项目演示视频:

【项目分享】基于深度学习的花卉检测系统(含PyQt界面)

一、数据集

1.1 数据集介绍

本项目使用的数据集是由谷歌创建的一个用于机器学习和计算机视觉任务的图像数据集,称为花卉数据集(Flower Photos Dataset)。它包含了来自五种不同花卉类别的图像,每个类别大约有几百到一千张图像。这些花卉类别包括:雏菊(Daisy)、蒲公英(Dandelion)、玫瑰(Roses)、向日葵(Sunflowers)、郁金香(Tulips) 。

下载链接:http://download.tensorflow.org/example_images/flower_photos.tgz

下载后得到一个.tgr文件,解压后,文件夹下包含了5个子文件夹,每个子文件夹都存储了一种类别的花的图片,子文件夹的名称就是花的类别的名称,如下图:
在这里插入图片描述

1.2 数据预处理

使用MyDataSet类在 PyTorch 中加载图像数据并将其与相应的类别标签配对,完成自定义数据集的生成。它包含初始化方法__init__来接收图像文件路径列表和对应的类别标签列表,并提供了__getitem__方法来获取图像及其标签,同时还可以使用collate_fn将多个样本进行批处理。

class MyDataSet(Dataset):"""自定义数据集"""def __init__(self, images_path: list, images_class: list, transform=None):self.images_path = images_pathself.images_class = images_classself.transform = transformdef __len__(self):return len(self.images_path)def __getitem__(self, item):img = Image.open(self.images_path[item])# RGB为彩色图片,L为灰度图片if img.mode != 'RGB':raise ValueError("image: {} isn't RGB mode.".format(self.images_path[item]))label = self.images_class[item]if self.transform is not None:img = self.transform(img)return img, label@staticmethoddef collate_fn(batch):# 官方实现的default_collate可以参考# https://github.com/pytorch/pytorch/blob/67b7e751e6b5931a9f45274653f4f653a4e6cdf6/torch/utils/data/_utils/collate.pyimages, labels = tuple(zip(*batch))images = torch.stack(images, dim=0)labels = torch.as_tensor(labels)return images, labels

二、模型搭建

我们使用的是一种称为 Swin_Transformer 的新视觉 Transformer,它可以作为 CV 的通用主干。将 Transformer 从语言适应到视觉方面的挑战来自两个域之间的差异,例如视觉实体的规模以及相比于文本单词的高分辨率图像像素的巨大差异。为解决这些差异,我们提出了一种 层次化 (hierarchical) Transformer,其表示是用移位窗口 (Shifted Windows) 计算的。移位窗口方案通过将自注意力计算限制在不重叠的局部窗口的同时,还允许跨窗口连接来提高效率。这种分层架构具有在各种尺度上建模的灵活性,并且相对于图像大小具有线性计算复杂度。Swin Transformer 的这些特性使其与广泛的视觉任务兼容,包括图像分类(ImageNet-1K 的 87.3 top-1 Acc)和密集预测任务,例如目标检测(COCO test dev 的 58.7 box AP 和 51.1 mask AP)和语义分割(ADE20K val 的 53.5 mIoU)。它的性能在 COCO 上以 +2.7 box AP 和 +2.6 mask AP 以及在 ADE20K 上 +3.2 mIoU 的大幅度超越了SOTA 技术,证明了基于 Transformer 的模型作为视觉主干的潜力。分层设计和移位窗口方法也证明了其对全 MLP 架构是有益的。Swin_Transformer模型的整体架构,如下图所示:
在这里插入图片描述
而我们代码的模型具体实现主要包括如下几个模块:PatchEmbed 模块WindowAttention模块、SwinTransformerBlock模块 BasicLayer模块、SwinTransformer模块以及辅助函数drop_path_f等。

PatchEmbed 模块:将输入图像划分为不重叠的图像块,并将每个图像块转换为嵌入向量。

class PatchEmbed(nn.Module):"""2D Image to Patch Embedding"""def __init__(self, patch_size=4, in_c=3, embed_dim=96, norm_layer=None):super().__init__()patch_size = (patch_size, patch_size)self.patch_size = patch_sizeself.in_chans = in_cself.embed_dim = embed_dimself.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size)self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()def forward(self, x):_, _, H, W = x.shape# padding# 如果输入图片的H,W不是patch_size的整数倍,需要进行paddingpad_input = (H % self.patch_size[0] != 0) or (W % self.patch_size[1] != 0)if pad_input:# to pad the last 3 dimensions,# (W_left, W_right, H_top,H_bottom, C_front, C_back)x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1],0, self.patch_size[0] - H % self.patch_size[0],0, 0))# 下采样patch_size倍x = self.proj(x)_, _, H, W = x.shape# flatten: [B, C, H, W] -> [B, C, HW]# transpose: [B, C, HW] -> [B, HW, C]x = x.flatten(2).transpose(1, 2)x = self.norm(x)return x, H, W

WindowAttention 模块:基于窗口的多头自注意力机制,用于捕获图像块之间的全局关系。

class WindowAttention(nn.Module):r""" Window based multi-head self attention (W-MSA) module with relative position bias.It supports both of shifted and non-shifted window.Args:dim (int): Number of input channels.window_size (tuple[int]): The height and width of the window.num_heads (int): Number of attention heads.qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: Trueattn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0proj_drop (float, optional): Dropout ratio of output. Default: 0.0"""def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.):super().__init__()self.dim = dimself.window_size = window_size  # [Mh, Mw]self.num_heads = num_headshead_dim = dim // num_headsself.scale = head_dim ** -0.5# define a parameter table of relative position biasself.relative_position_bias_table = nn.Parameter(torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads))  # [2*Mh-1 * 2*Mw-1, nH]# get pair-wise relative position index for each token inside the windowcoords_h = torch.arange(self.window_size[0])coords_w = torch.arange(self.window_size[1])coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # [2, Mh, Mw]coords_flatten = torch.flatten(coords, 1)  # [2, Mh*Mw]# [2, Mh*Mw, 1] - [2, 1, Mh*Mw]relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # [2, Mh*Mw, Mh*Mw]relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # [Mh*Mw, Mh*Mw, 2]relative_coords[:, :, 0] += self.window_size[0] - 1  # shift to start from 0relative_coords[:, :, 1] += self.window_size[1] - 1relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1relative_position_index = relative_coords.sum(-1)  # [Mh*Mw, Mh*Mw]self.register_buffer("relative_position_index", relative_position_index)self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)self.attn_drop = nn.Dropout(attn_drop)self.proj = nn.Linear(dim, dim)self.proj_drop = nn.Dropout(proj_drop)nn.init.trunc_normal_(self.relative_position_bias_table, std=.02)self.softmax = nn.Softmax(dim=-1)def forward(self, x, mask: Optional[torch.Tensor] = None):"""Args:x: input features with shape of (num_windows*B, Mh*Mw, C)mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None"""# [batch_size*num_windows, Mh*Mw, total_embed_dim]B_, N, C = x.shape# qkv(): -> [batch_size*num_windows, Mh*Mw, 3 * total_embed_dim]# reshape: -> [batch_size*num_windows, Mh*Mw, 3, num_heads, embed_dim_per_head]# permute: -> [3, batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)# [batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]q, k, v = qkv.unbind(0)  # make torchscript happy (cannot use tensor as tuple)# transpose: -> [batch_size*num_windows, num_heads, embed_dim_per_head, Mh*Mw]# @: multiply -> [batch_size*num_windows, num_heads, Mh*Mw, Mh*Mw]q = q * self.scaleattn = (q @ k.transpose(-2, -1))# relative_position_bias_table.view: [Mh*Mw*Mh*Mw,nH] -> [Mh*Mw,Mh*Mw,nH]relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # [nH, Mh*Mw, Mh*Mw]attn = attn + relative_position_bias.unsqueeze(0)if mask is not None:# mask: [nW, Mh*Mw, Mh*Mw]nW = mask.shape[0]  # num_windows# attn.view: [batch_size, num_windows, num_heads, Mh*Mw, Mh*Mw]# mask.unsqueeze: [1, nW, 1, Mh*Mw, Mh*Mw]attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)attn = attn.view(-1, self.num_heads, N, N)attn = self.softmax(attn)else:attn = self.softmax(attn)attn = self.attn_drop(attn)# @: multiply -> [batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]# transpose: -> [batch_size*num_windows, Mh*Mw, num_heads, embed_dim_per_head]# reshape: -> [batch_size*num_windows, Mh*Mw, total_embed_dim]x = (attn @ v).transpose(1, 2).reshape(B_, N, C)x = self.proj(x)x = self.proj_drop(x)return x

SwinTransformerBlock 模块:Swin Transformer 的基本模块,包含了窗口注意力机制和MLP前馈网络。

class SwinTransformerBlock(nn.Module):r""" Swin Transformer Block.Args:dim (int): Number of input channels.num_heads (int): Number of attention heads.window_size (int): Window size.shift_size (int): Shift size for SW-MSA.mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: Truedrop (float, optional): Dropout rate. Default: 0.0attn_drop (float, optional): Attention dropout rate. Default: 0.0drop_path (float, optional): Stochastic depth rate. Default: 0.0act_layer (nn.Module, optional): Activation layer. Default: nn.GELUnorm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm"""def __init__(self, dim, num_heads, window_size=7, shift_size=0,mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0.,act_layer=nn.GELU, norm_layer=nn.LayerNorm):super().__init__()self.dim = dimself.num_heads = num_headsself.window_size = window_sizeself.shift_size = shift_sizeself.mlp_ratio = mlp_ratioassert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"self.norm1 = norm_layer(dim)self.attn = WindowAttention(dim, window_size=(self.window_size, self.window_size), num_heads=num_heads, qkv_bias=qkv_bias,attn_drop=attn_drop, proj_drop=drop)self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()self.norm2 = norm_layer(dim)mlp_hidden_dim = int(dim * mlp_ratio)self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)def forward(self, x, attn_mask):H, W = self.H, self.WB, L, C = x.shapeassert L == H * W, "input feature has wrong size"shortcut = xx = self.norm1(x)x = x.view(B, H, W, C)# pad feature maps to multiples of window size# 把feature map给pad到window size的整数倍pad_l = pad_t = 0pad_r = (self.window_size - W % self.window_size) % self.window_sizepad_b = (self.window_size - H % self.window_size) % self.window_sizex = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))_, Hp, Wp, _ = x.shape# cyclic shiftif self.shift_size > 0:shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))else:shifted_x = xattn_mask = None# partition windowsx_windows = window_partition(shifted_x, self.window_size)  # [nW*B, Mh, Mw, C]x_windows = x_windows.view(-1, self.window_size * self.window_size, C)  # [nW*B, Mh*Mw, C]# W-MSA/SW-MSAattn_windows = self.attn(x_windows, mask=attn_mask)  # [nW*B, Mh*Mw, C]# merge windowsattn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)  # [nW*B, Mh, Mw, C]shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp)  # [B, H', W', C]# reverse cyclic shiftif self.shift_size > 0:x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))else:x = shifted_xif pad_r > 0 or pad_b > 0:# 把前面pad的数据移除掉x = x[:, :H, :W, :].contiguous()x = x.view(B, H * W, C)# FFNx = shortcut + self.drop_path(x)x = x + self.drop_path(self.mlp(self.norm2(x)))return x

BasicLayer 模块:用于构建 Swin Transformer 的一个阶段,可以包含多个 SwinTransformerBlock 模块。

class BasicLayer(nn.Module):"""A basic Swin Transformer layer for one stage.Args:dim (int): Number of input channels.depth (int): Number of blocks.num_heads (int): Number of attention heads.window_size (int): Local window size.mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: Truedrop (float, optional): Dropout rate. Default: 0.0attn_drop (float, optional): Attention dropout rate. Default: 0.0drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNormdownsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: Noneuse_checkpoint (bool): Whether to use checkpointing to save memory. Default: False."""def __init__(self, dim, depth, num_heads, window_size,mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0.,drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False):super().__init__()self.dim = dimself.depth = depthself.window_size = window_sizeself.use_checkpoint = use_checkpointself.shift_size = window_size // 2# build blocksself.blocks = nn.ModuleList([SwinTransformerBlock(dim=dim,num_heads=num_heads,window_size=window_size,shift_size=0 if (i % 2 == 0) else self.shift_size,mlp_ratio=mlp_ratio,qkv_bias=qkv_bias,drop=drop,attn_drop=attn_drop,drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,norm_layer=norm_layer)for i in range(depth)])# patch merging layerif downsample is not None:self.downsample = downsample(dim=dim, norm_layer=norm_layer)else:self.downsample = Nonedef create_mask(self, x, H, W):# calculate attention mask for SW-MSA# 保证Hp和Wp是window_size的整数倍Hp = int(np.ceil(H / self.window_size)) * self.window_sizeWp = int(np.ceil(W / self.window_size)) * self.window_size# 拥有和feature map一样的通道排列顺序,方便后续window_partitionimg_mask = torch.zeros((1, Hp, Wp, 1), device=x.device)  # [1, Hp, Wp, 1]h_slices = (slice(0, -self.window_size),slice(-self.window_size, -self.shift_size),slice(-self.shift_size, None))w_slices = (slice(0, -self.window_size),slice(-self.window_size, -self.shift_size),slice(-self.shift_size, None))cnt = 0for h in h_slices:for w in w_slices:img_mask[:, h, w, :] = cntcnt += 1mask_windows = window_partition(img_mask, self.window_size)  # [nW, Mh, Mw, 1]mask_windows = mask_windows.view(-1, self.window_size * self.window_size)  # [nW, Mh*Mw]attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)  # [nW, 1, Mh*Mw] - [nW, Mh*Mw, 1]# [nW, Mh*Mw, Mh*Mw]attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))return attn_maskdef forward(self, x, H, W):attn_mask = self.create_mask(x, H, W)  # [nW, Mh*Mw, Mh*Mw]for blk in self.blocks:blk.H, blk.W = H, Wif not torch.jit.is_scripting() and self.use_checkpoint:x = checkpoint.checkpoint(blk, x, attn_mask)else:x = blk(x, attn_mask)if self.downsample is not None:x = self.downsample(x, H, W)H, W = (H + 1) // 2, (W + 1) // 2return x, H, W

SwinTransformer 模块:整个 Swin Transformer 模型的主体结构,包含了多个 BasicLayer 模块。

class SwinTransformer(nn.Module):r""" Swin TransformerA PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows`  -https://arxiv.org/pdf/2103.14030Args:patch_size (int | tuple(int)): Patch size. Default: 4in_chans (int): Number of input image channels. Default: 3num_classes (int): Number of classes for classification head. Default: 1000embed_dim (int): Patch embedding dimension. Default: 96depths (tuple(int)): Depth of each Swin Transformer layer.num_heads (tuple(int)): Number of attention heads in different layers.window_size (int): Window size. Default: 7mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: Truedrop_rate (float): Dropout rate. Default: 0attn_drop_rate (float): Attention dropout rate. Default: 0drop_path_rate (float): Stochastic depth rate. Default: 0.1norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.patch_norm (bool): If True, add normalization after patch embedding. Default: Trueuse_checkpoint (bool): Whether to use checkpointing to save memory. Default: False"""def __init__(self, patch_size=4, in_chans=3, num_classes=1000,embed_dim=96, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24),window_size=7, mlp_ratio=4., qkv_bias=True,drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,norm_layer=nn.LayerNorm, patch_norm=True,use_checkpoint=False, **kwargs):super().__init__()self.num_classes = num_classesself.num_layers = len(depths)self.embed_dim = embed_dimself.patch_norm = patch_norm# stage4输出特征矩阵的channelsself.num_features = int(embed_dim * 2 ** (self.num_layers - 1))self.mlp_ratio = mlp_ratio# split image into non-overlapping patchesself.patch_embed = PatchEmbed(patch_size=patch_size, in_c=in_chans, embed_dim=embed_dim,norm_layer=norm_layer if self.patch_norm else None)self.pos_drop = nn.Dropout(p=drop_rate)# stochastic depthdpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule# build layersself.layers = nn.ModuleList()for i_layer in range(self.num_layers):# 注意这里构建的stage和论文图中有些差异# 这里的stage不包含该stage的patch_merging层,包含的是下个stage的layers = BasicLayer(dim=int(embed_dim * 2 ** i_layer),depth=depths[i_layer],num_heads=num_heads[i_layer],window_size=window_size,mlp_ratio=self.mlp_ratio,qkv_bias=qkv_bias,drop=drop_rate,attn_drop=attn_drop_rate,drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],norm_layer=norm_layer,downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,use_checkpoint=use_checkpoint)self.layers.append(layers)self.norm = norm_layer(self.num_features)self.avgpool = nn.AdaptiveAvgPool1d(1)self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()self.apply(self._init_weights)def _init_weights(self, m):if isinstance(m, nn.Linear):nn.init.trunc_normal_(m.weight, std=.02)if isinstance(m, nn.Linear) and m.bias is not None:nn.init.constant_(m.bias, 0)elif isinstance(m, nn.LayerNorm):nn.init.constant_(m.bias, 0)nn.init.constant_(m.weight, 1.0)def forward(self, x):# x: [B, L, C]x, H, W = self.patch_embed(x)x = self.pos_drop(x)for layer in self.layers:x, H, W = layer(x, H, W)x = self.norm(x)  # [B, L, C]x = self.avgpool(x.transpose(1, 2))  # [B, C, 1]x = torch.flatten(x, 1)x = self.head(x)return x

辅助函数drop_path_f :用于实现随机深度路径(Stochastic Depth)以及一些用于处理窗口的辅助函数。

def drop_path_f(x, drop_prob: float = 0., training: bool = False):"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted forchanging the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use'survival rate' as the argument."""if drop_prob == 0. or not training:return xkeep_prob = 1 - drop_probshape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNetsrandom_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)random_tensor.floor_()  # binarizeoutput = x.div(keep_prob) * random_tensorreturn output

三、训练与测试

3.1 模型训练

我们训练的模型是在通用的预训练模型swin_base_patch4_window7_224.pth上再次训练的,通过模型训练微调,能给得到一个效果更好的花卉检测模型。

首先,设置模型训练的关键参数,如检测目标类别数目(可以按照自己的数据集和检测种类进行设置)、批量大小、训练周期、输入数据的维度等参数。

    parser = argparse.ArgumentParser()parser.add_argument('--num_classes', type=int, default=5)parser.add_argument('--epochs', type=int, default=100)parser.add_argument('--batch-size', type=int, default=16)parser.add_argument('--lr', type=float, default=0.0001)# 数据集所在根目录# http://download.tensorflow.org/example_images/flower_photos.tgzparser.add_argument('--data-path', type=str,default="flower_photos")# 预训练权重路径,如果不想载入就设置为空字符parser.add_argument('--weights', type=str, default='./swin_base_patch4_window7_224.pth',help='initial weights path')# 是否冻结权重parser.add_argument('--freeze-layers', type=bool, default=False)parser.add_argument('--device', default='cuda:0', help='device id (i.e. 0 or 0,1 or cpu)')

然后通过下面代码,设置模型训练设备和文件夹路径。接着对数据进行预处理并创建数据集和数据加载器。并根据命令行参数配置模型并加载预训练权重,可选择性地冻结部分模型参数。最后,使用AdamW优化器进行训练,并在每个epoch结束时保存模型权重。整个训练过程可以记录损失、准确率等指标,并将其写入TensorBoard。

def main(args):device = torch.device(args.device if torch.cuda.is_available() else "cpu")if os.path.exists("./weights") is False:os.makedirs("./weights")tb_writer = SummaryWriter()train_images_path, train_images_label, val_images_path, val_images_label = read_split_data(args.data_path)img_size = 224data_transform = {"train": transforms.Compose([transforms.RandomResizedCrop(img_size),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),"val": transforms.Compose([transforms.Resize(int(img_size * 1.143)),transforms.CenterCrop(img_size),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])}# 实例化训练数据集train_dataset = MyDataSet(images_path=train_images_path,images_class=train_images_label,transform=data_transform["train"])# 实例化验证数据集val_dataset = MyDataSet(images_path=val_images_path,images_class=val_images_label,transform=data_transform["val"])batch_size = args.batch_sizenw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])  # number of workersprint('Using {} dataloader workers every process'.format(nw))train_loader = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True,pin_memory=True,num_workers=nw,collate_fn=train_dataset.collate_fn)val_loader = torch.utils.data.DataLoader(val_dataset,batch_size=batch_size,shuffle=False,pin_memory=True,num_workers=nw,collate_fn=val_dataset.collate_fn)model = create_model(num_classes=args.num_classes).to(device)if args.weights != "":assert os.path.exists(args.weights), "weights file: '{}' not exist.".format(args.weights)weights_dict = torch.load(args.weights, map_location=device)["model"]# 删除有关分类类别的权重for k in list(weights_dict.keys()):if "head" in k:del weights_dict[k]print(model.load_state_dict(weights_dict, strict=False))if args.freeze_layers:for name, para in model.named_parameters():# 除head外,其他权重全部冻结if "head" not in name:para.requires_grad_(False)else:print("training {}".format(name))pg = [p for p in model.parameters() if p.requires_grad]optimizer = optim.AdamW(pg, lr=args.lr, weight_decay=5E-2)for epoch in range(args.epochs):# traintrain_loss, train_acc = train_one_epoch(model=model,optimizer=optimizer,data_loader=train_loader,device=device,epoch=epoch)# validateval_loss, val_acc = evaluate(model=model,data_loader=val_loader,device=device,epoch=epoch)train_acc_list.append(train_acc)train_loss_list.append(train_loss)val_acc_list.append(val_acc)val_loss_list.append(val_loss)tags = ["train_loss", "train_acc", "val_loss", "val_acc", "learning_rate"]tb_writer.add_scalar(tags[0], train_loss, epoch)tb_writer.add_scalar(tags[1], train_acc, epoch)tb_writer.add_scalar(tags[2], val_loss, epoch)tb_writer.add_scalar(tags[3], val_acc, epoch)tb_writer.add_scalar(tags[4], optimizer.param_groups[0]["lr"], epoch)torch.save(model.state_dict(), "./weights/model-{}.pth".format(epoch))

整个训练过程可以记录损失、准确率等指标
在这里插入图片描述

3.2 模型测试

可以分别使用predict.py对单张花卉图片和predict-batch.py批量进行检测。

# predict.py
def main(img_path):import osos.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")img_size = 224data_transform = transforms.Compose([transforms.Resize(int(img_size * 1.143)),transforms.CenterCrop(img_size),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])# load image# img_path = "./tulip.jpg"assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path)img = Image.open(img_path)plt.imshow(img)# [N, C, H, W]img = data_transform(img)# expand batch dimensionimg = torch.unsqueeze(img, dim=0)# read class_indictjson_path = './class_indices.json'assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path)json_file = open(json_path, "r")class_indict = json.load(json_file)# create modelmodel = create_model(num_classes=5).to(device)# load model weightsmodel_weight_path = "./weights/model-86.pth"model.load_state_dict(torch.load(model_weight_path, map_location=device))model.eval()with torch.no_grad():# predict classoutput = torch.squeeze(model(img.to(device))).cpu()predict = torch.softmax(output, dim=0)predict_cla = torch.argmax(predict).numpy()# print_res = "class: {}   prob: {:.3}".format(class_indict[str(predict_cla)],#                                              predict[predict_cla].numpy())# plt.title(print_res)for i in range(len(predict)):print("class: {:10}   prob: {:.3}".format(class_indict[str(i)],predict[i].numpy()))# plt.show()res = class_indict[str(list(predict.numpy()).index(max(predict.numpy())))]num= "%.2f" % (max(predict.numpy()) * 100) + "%"print(res,num)return res,max(predict.numpy())# print(class_indict[str(list(predict.numpy()).index(max(predict.numpy())))])
def main():device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")img_size = 224data_transform = transforms.Compose([transforms.Resize(int(img_size * 1.143)),transforms.CenterCrop(img_size),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])# read class_indictjson_path = './class_indices.json'assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path)json_file = open(json_path, "r")class_indict = json.load(json_file)# create modelmodel = create_model(num_classes=5).to(device)# load model weightsmodel_weight_path = "./weights/model-86.pth"model.load_state_dict(torch.load(model_weight_path, map_location=device))model.eval()# load imagedata_root = os.path.abspath(os.path.join(os.getcwd(), "../"))  # get data root pathall_dir = os.path.join(data_root, "data_set")  # flower data set path# img_path_list = ["../tulip.jpg", "../rose.jpg"]img_list = []test_dir = os.path.join(all_dir, "jpg")  # testtest_datasets = datasets.ImageFolder(test_dir, transform=data_transform)for img_path, idx in test_datasets.imgs:assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path)# img_path = "./tulip.jpg"assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path)img = Image.open(img_path)plt.imshow(img)# [N, C, H, W]img = data_transform(img)# expand batch dimensionimg = torch.unsqueeze(img, dim=0)with torch.no_grad():# predict classoutput = torch.squeeze(model(img.to(device))).cpu()predict = torch.softmax(output, dim=0)predict_cla = torch.argmax(predict).numpy()print_res = "image: {}  class: {}   prob: {:.3}".format(img_path, class_indict[str(predict_cla)],predict[predict_cla].numpy())print(print_res)

测试结果:

在这里插入图片描述

四、PyQt界面实现

当整个项目构建完成后,使用PyQt5编写可视化界面,可以支持花卉图像的检测。运行主界面.py,然后点击文件夹图片传入待检测的花卉图像即可。经过花卉识别系统识别后,会输出相应的类别和置信度。
在这里插入图片描述

参考资料

  1. 论文:https://arxiv.org/pdf/2103.14030.pdf
  2. 代码:https://github.com/microsoft/Swin-Transformer
  3. timm:https://hub.fastgit.org/rwightman/pytorch-image-models/blob/master/timm/models/swin_transformer.py
  4. Swin_Transformer网络模型详解资料:详解Swin_Transformer (SwinT)

这篇关于基于深度学习的花卉检测系统(含PyQt界面)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/905151

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听