NLTK自然语言处理(2)NLTK常用命令

2024-04-14 23:32

本文主要是介绍NLTK自然语言处理(2)NLTK常用命令,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 搜索文本
    • 相似上下文
    • 共同上下文
    • 单词的位置信息离散图
  • 单词计数
    • 文本长度
    • 词汇表
    • 单词个数与单词占比
    • 平均词长、句长、每个词出现次数
  • 简单的统计
    • 频率分布
      • 频率分布类中定义的函数
    • 条件频率分布
    • 细粒度的选择词
      • 按字符长度选择单词
      • 多重条件选择单词
    • 词语搭配和双连词

搜索文本

相似上下文

similar() 用来查看与目标词出现在相似上下文中的词。第一个参数是目标词,第二个参数是相似词的个数,默认num=20

共同上下文

common_contexts() 可以查看一个列表中的词的共同上下文

单词的位置信息离散图

dispersion_plot() 可以用离散图表示词的位置信息,横轴表示从文本开头算起前方有多少词。

单词计数

文本长度

len() 文本长度计算的是单词与标点或者叫做“标识符”的数量的总和

词汇表

set() 可以生成文本的词汇表,即将重复的标识符合并后生成的列表

单词个数与单词占比

count() 可以直接返回某单词在文本中的个数

100*text4.count('a')/len(text4)#单词a的占比

平均词长、句长、每个词出现次数

 for fileid in gutenberg.fileids():num_chars = len(gutenberg.raw(fileid)) #字符数num_words = len(gutenberg.words(fileid))#词数num_sents = len(gutenberg.sents(fileid))#句子数
num_vocab = len(set(w.lower() for w in gutenberg.words(fileid)))#不区分大小写不重复词数
print(round(num_chars/num_words), round(num_words/num_sents), round(num_words/num_vocab), fileid)
#输出平均词长、平均句子长度、本文中每个词出现的平均次数(我们的词汇多样性得分)

简单的统计

频率分布

频率分布类中定义的函数

fdist = FreqDist(samples) 创建包含给定样本的频率分布
fdist[sample] += 1	增加样本的数目
fdist['monstrous']	计数给定样本出现的次数
fdist.freq('monstrous')	给定样本的频率
fdist.N()	样本总数
fdist.most_common(n)	最常见的n 个样本和它们的频率
for sample in fdist:	遍历样本
fdist.max()	数值最大的样本
fdist.tabulate()	绘制频率分布表
fdist.plot()	绘制频率分布图
fdist.plot(cumulative=True)	绘制累积频率分布图
fdist1 |= fdist2	使用fdist2 更新fdist1 中的数目
fdist1 < fdist2	测试样本在fdist1 中出现的频率是否小于fdist2

条件频率分布

当语料文本被分为几类,如文体、主题、作者等时,可以计算每个类别独立的频率分布,这将允许我们研究类别之间的系统性差异。
条件频率分布是频率分布的集合,每个频率分布有一个不同的“条件”。这个条件通常是文本的类别。
ConditionalFreqDist()
条件频率分布需要给每个事件关联一个条件。
所以不是处理一个单词词序列,我们必须处理的是一个配对序列
每个配对的形式是:(条件, 事件)

细粒度的选择词

按字符长度选择单词

多重条件选择单词

词语搭配和双连词

bigrams() 获取了包含传入词汇的双连词。
collocations() 从两个语料库中获取了一些搭配,一个“搭配”是经常在一起出现的词序列。

这篇关于NLTK自然语言处理(2)NLTK常用命令的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/904319

相关文章

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

Go异常处理、泛型和文件操作实例代码

《Go异常处理、泛型和文件操作实例代码》Go语言的异常处理机制与传统的面向对象语言(如Java、C#)所使用的try-catch结构有所不同,它采用了自己独特的设计理念和方法,:本文主要介绍Go异... 目录一:异常处理常见的异常处理向上抛中断程序恢复程序二:泛型泛型函数泛型结构体泛型切片泛型 map三:文

SpringSecurity中的跨域问题处理方案

《SpringSecurity中的跨域问题处理方案》本文介绍了跨域资源共享(CORS)技术在JavaEE开发中的应用,详细讲解了CORS的工作原理,包括简单请求和非简单请求的处理方式,本文结合实例代码... 目录1.什么是CORS2.简单请求3.非简单请求4.Spring跨域解决方案4.1.@CrossOr

requests处理token鉴权接口和jsonpath使用方式

《requests处理token鉴权接口和jsonpath使用方式》文章介绍了如何使用requests库进行token鉴权接口的处理,包括登录提取token并保存,还详述了如何使用jsonpath表达... 目录requests处理token鉴权接口和jsonpath使用json数据提取工具总结reques

C# 空值处理运算符??、?. 及其它常用符号

《C#空值处理运算符??、?.及其它常用符号》本文主要介绍了C#空值处理运算符??、?.及其它常用符号,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录一、核心运算符:直接解决空值问题1.??空合并运算符2.?.空条件运算符二、辅助运算符:扩展空值处理

浅析Python中如何处理Socket超时

《浅析Python中如何处理Socket超时》在网络编程中,Socket是实现网络通信的基础,本文将深入探讨Python中如何处理Socket超时,并提供完整的代码示例和最佳实践,希望对大家有所帮助... 目录开篇引言核心要点逐一深入讲解每个要点1. 设置Socket超时2. 处理超时异常3. 使用sele

SpringMVC配置、映射与参数处理​入门案例详解

《SpringMVC配置、映射与参数处理​入门案例详解》文章介绍了SpringMVC框架的基本概念和使用方法,包括如何配置和编写Controller、设置请求映射规则、使用RestFul风格、获取请求... 目录1.SpringMVC概述2.入门案例①导入相关依赖②配置web.XML③配置SpringMVC

解决docker目录内存不足扩容处理方案

《解决docker目录内存不足扩容处理方案》文章介绍了Docker存储目录迁移方法:因系统盘空间不足,需将Docker数据迁移到更大磁盘(如/home/docker),通过修改daemon.json配... 目录1、查看服务器所有磁盘的使用情况2、查看docker镜像和容器存储目录的空间大小3、停止dock

5 种使用Python自动化处理PDF的实用方法介绍

《5种使用Python自动化处理PDF的实用方法介绍》自动化处理PDF文件已成为减少重复工作、提升工作效率的重要手段,本文将介绍五种实用方法,从内置工具到专业库,帮助你在Python中实现PDF任务... 目录使用内置库(os、subprocess)调用外部工具使用 PyPDF2 进行基本 PDF 操作使用

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺