程序设计与算法二郭炜枚举001特殊密码锁及解题思路

2024-04-14 13:32

本文主要是介绍程序设计与算法二郭炜枚举001特殊密码锁及解题思路,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目

有一种特殊的二进制密码锁,由n个相连的按钮组成(n<30),按钮有凹/凸两种状态,用手按按钮会改变其状态。

然而让人头疼的是,当你按一个按钮时,跟它相邻的两个按钮状态也会反转。当然,如果你按的是最左或者最右边的按钮,该按钮只会影响到跟它相邻的一个按钮。

当前密码锁状态已知,需要解决的问题是,你至少需要按多少次按钮,才能将密码锁转变为所期望的目标状态。

输入

两行,给出两个由0、1组成的等长字符串,表示当前/目标密码锁状态,其中0代表凹,1代表凸。

输出

至少需要进行的按按钮操作次数,如果无法实现转变,则输出impossible。

样例输入

011
000

样例输出

1

解题方法

使用两个int型的变量保存初始值和最终值,通过位运算改变每个bit的状态。枚举第一个bit也就是第一个按钮的两种情况,按下第一个按钮,第一个bit反转后可能的按键次数,这是第一种情况;不按下第一个按钮,第一个bit不发生反转后续可能的按键次数,这是第二种情况。

代码实现

# include <iostream>
# include <cstring>
# include <string>
# include <memory>
using namespace std;int Getbit(int a, int i)
{return (a>>i)&1;
}int Setbit(int &a, int i, int b)
{if(b) a |= (1<<i);else a &= ~(1<<i);
}int Filtbit(int &a, int i)
{a ^= (1<<i);
}int OutputResult(int result)
{if(result>=0) cout<<result;else cout<<"impossible";
}int main()
{int init=0,mid=0,end=0,cnt=0,result1=0,result2=0;char line[30];//输入数据cin>>line;cnt = strlen(line);for(int i=0;i<cnt;i++) Setbit(init,i,line[i]-'0');cin>>line;for(int i=0;i<cnt;i++) Setbit(end,i,line[i]-'0');//不按下第一个按钮的情况mid = init;for(int i=0;i<cnt-1;i++){if(Getbit(mid,i)!=Getbit(end,i)){Filtbit(mid,i);Filtbit(mid,i+1);if(i<cnt-2&&i!=0) Filtbit(mid,i+2);result1++;}if(mid==end){OutputResult(result1);break;}}//按下第一个按钮的情况if(mid!=end){mid = init;//按下第一个按钮Filtbit(mid,0);Filtbit(mid,1);result2++; for(int i=0;i<cnt-1;i++){if(Getbit(mid,i)!=Getbit(end,i)){Filtbit(mid,i);Filtbit(mid,i+1);if(i<cnt-2) Filtbit(mid,i+2);result2++;}if(mid==end){OutputResult(result2);break;}}}if(cnt==1){result1 = 1;OutputResult(result1);}else if(mid!=end){result1 = -1;OutputResult(result1);}return 0;
}

这篇关于程序设计与算法二郭炜枚举001特殊密码锁及解题思路的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/903112

相关文章

C#实现获得某个枚举的所有名称

《C#实现获得某个枚举的所有名称》这篇文章主要为大家详细介绍了C#如何实现获得某个枚举的所有名称,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... C#中获得某个枚举的所有名称using System;using System.Collections.Generic;usi

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

JAVA利用顺序表实现“杨辉三角”的思路及代码示例

《JAVA利用顺序表实现“杨辉三角”的思路及代码示例》杨辉三角形是中国古代数学的杰出研究成果之一,是我国北宋数学家贾宪于1050年首先发现并使用的,:本文主要介绍JAVA利用顺序表实现杨辉三角的思... 目录一:“杨辉三角”题目链接二:题解代码:三:题解思路:总结一:“杨辉三角”题目链接题目链接:点击这里

Java 枚举的常用技巧汇总

《Java枚举的常用技巧汇总》在Java中,枚举类型是一种特殊的数据类型,允许定义一组固定的常量,默认情况下,toString方法返回枚举常量的名称,本文提供了一个完整的代码示例,展示了如何在Jav... 目录一、枚举的基本概念1. 什么是枚举?2. 基本枚举示例3. 枚举的优势二、枚举的高级用法1. 枚举

Rust中的Option枚举快速入门教程

《Rust中的Option枚举快速入门教程》Rust中的Option枚举用于表示可能不存在的值,提供了多种方法来处理这些值,避免了空指针异常,文章介绍了Option的定义、常见方法、使用场景以及注意事... 目录引言Option介绍Option的常见方法Option使用场景场景一:函数返回可能不存在的值场景

Perl 特殊变量详解

《Perl特殊变量详解》Perl语言中包含了许多特殊变量,这些变量在Perl程序的执行过程中扮演着重要的角色,:本文主要介绍Perl特殊变量,需要的朋友可以参考下... perl 特殊变量Perl 语言中包含了许多特殊变量,这些变量在 Perl 程序的执行过程中扮演着重要的角色。特殊变量通常用于存储程序的

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖