AlphaGo首席研究员亲授!10张PPT介绍10大强化学习黄金法则!

2024-04-14 00:32

本文主要是介绍AlphaGo首席研究员亲授!10张PPT介绍10大强化学习黄金法则!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

640?wx_fmt=png

来源:新智元

本文共多图,建议阅读10分钟。

为你分享Dave Silver在Deep Learning Indaba活动的主题演讲中归纳出的强化学习中要注意的10大要点。


640?wx_fmt=png


[ 导读 ]近日,谷歌DeepMind强化学习研究团队负责人、AlphaGo项目首席研究员Dave Silver在Deep Learning Indaba活动的主题演讲中归纳出了强化学习中要注意的10大要点。一起来看看,也许能少走点弯路。


近日,在南非斯泰伦博斯举行的Deep Learning Indaba活动上,谷歌DeepMind强化学习研究团队负责人、AlphaGo项目首席研究员Dave Silver在主题演讲中归纳出强化学习中要注意的10大要点。


活动主办方将Dave Silver演讲的PPT截图和文字要点发在了推特上,引发了广泛讨论。


Silver的演讲中提出的强化学习10大要点涵盖涉及算法评估、状态控制、建模函数等方面的心得和建议,非常值得开发者和机器学习爱好者参考学习。一起看看他是怎么说的吧!


640?wx_fmt=jpeg


1、在评估中产生进步 

 

客观、量化的估计会产生进步,对评估尺度的选择会决定进步的方向。这可能是项目推进过程中做出的最重要的决定。

 

目标驱动型研究:确认评估标准与最终目标密切相关。避免主观评估

 

假设驱动型研究:提出假设,在宽泛的条件下验证假设,与相似结果对比,而不是与最先进的结果对比。重要的是对结果的理解,而不是追求排名。

 

640?wx_fmt=jpeg


2、算法的可扩展性决定是否成功

 

算法的可扩展性是指其性能随资源的梯度变化。这里的资源可能是计算、存储和数据。算法的可扩展性决定了能否项目能否成功,它几乎永远比算法的起点重要。最终,好的算法总是无限资源条件下的最优解决方案。

 

640?wx_fmt=jpeg


3、稳定算法的通用性


算法通用性是指算法在不同深度学习环境下的表现。应避免对当前任务的过拟合。积极寻求可以适用于未来未知环境下的算法。


结论:要广泛验证,建立现实的机器学习环境。

 

640?wx_fmt=jpeg


4、 信任智能体的经验


经验(包括观察、动作、奖励)是指深度学习的数据。信任这些经验,将其作为唯一知识来源。尽管这些经验看上去不可学习,但最终长期来看,经验终将取得成功。

 

640?wx_fmt=jpeg


5、状态是主观的


智能体应该基于经验建立自身的状态,智能体的状态是关于其先前状态和新观察数据的函数。任何时候不要定义某一环境下的“真实”状态。


640?wx_fmt=jpeg


6、控制数据流


智能体处于大量数据流传感器环境中,智能体的行为会对数据流造成影响。


控制特征——控制数据流——控制未来——实现任何回报的最大化。 


640?wx_fmt=jpeg


7、价值函数可以对世界建模


价值函数是对未来的高效归纳和缓存。多关注固定时间段的查找,而非指数级的前瞻。可以独立计算和学习。利用多价值函数可以在不同时间范围内,对世界各个方面进行高效建模。


应避免使用原始的时间步长对世界进行建模。

 

640?wx_fmt=jpeg


8、从想象的经验中进行学习


想象接下来会发生什么,从想象的经验中进行学习,同时关注在当前时刻的值函数估计。

 

640?wx_fmt=jpeg


9、加强函数逼近器


差异化网络架构是一种有力工具,可以用来:以丰富的方式表示状态,实现差异化存储、差异化规划、层级控制。


将算法的复杂性融入网络架构,可以降低算法的复杂度,增加网络架构的可表达性。

 

640?wx_fmt=jpeg


10、要学习“如何学习”


人工智能的发展史呈现出一条清晰的发展脉络。


第一代:“美好的”老式人工智能。手动控制预测,不学习任何内容。

第二代:浅度学习。手动控制特征,学习预测。

第三代:深度学习。手动控制算法(优化器、目标、架构),学习特征和端对端预测。

第四代:Meta学习。无手动环节,学习算法、特征和端对端预测。


参考链接:

https://twitter.com/DeepIndaba/status/1040234486250782721


640?wx_fmt=jpeg

640?wx_fmt=jpeg

这篇关于AlphaGo首席研究员亲授!10张PPT介绍10大强化学习黄金法则!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/901637

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss