深度学习必懂的 13 种概率分布(附链接)

2024-04-13 22:48

本文主要是介绍深度学习必懂的 13 种概率分布(附链接),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

来源:AI开发者

本文约为1400字,建议阅读5分钟

本文为你介绍基本概率分布教程,大多数和使用 python 库进行深度学习有关。


概率分布概述

  • 共轭意味着它有共轭分布的关系。

在贝叶斯概率论中,如果后验分布 p(θx)与先验概率分布 p(θ)在同一概率分布族中,则先验和后验称为共轭分布,先验称为似然函数的共轭先验。共轭先验维基百科在这里(https://en.wikipedia.org/wiki/Conjugate_prior)。

  • 多分类表示随机方差大于 2。

  • n 次意味着我们也考虑了先验概率 p(x)。

  • 为了进一步了解概率,我建议阅读 (pattern recognition and machine learning,Bishop 2006)。

分布概率与特征

1.均匀分布(连续)

代码:

https://github.com/graykode/distribution-is-all-you-need/blob/master/uniform.py

均匀分布在 [a,b] 上具有相同的概率值,是简单概率分布。

2.伯努利分布(离散)

代码:

https://github.com/graykode/distribution-is-all-you-need/blob/master/bernoulli.py 

  • 先验概率 p(x)不考虑伯努利分布。因此,如果我们对最大似然进行优化,那么我们很容易被过度拟合。

  • 利用二元交叉熵对二项分类进行分类。它的形式与伯努利分布的负对数相同。

3.二项分布(离散)

代码:

https://github.com/graykode/distribution-is-all-you-need/blob/master/binomial.py 

  • 参数为 n 和 p 的二项分布是一系列 n 个独立实验中成功次数的离散概率分布。

  • 二项式分布是指通过指定要提前挑选的数量而考虑先验概率的分布。

4.多伯努利分布,分类分布(离散)

代码:

https://github.com/graykode/distribution-is-all-youneed/blob/master/categorical.py 

  • 多伯努利称为分类分布。

  • 交叉熵和采取负对数的多伯努利分布具有相同的形式。

5.多项式分布(离散)

代码:

https://github.com/graykode/distribution-is-all-you-need/blob/master/multinomial.py 

多项式分布与分类分布的关系与伯努尔分布与二项分布的关系相同。

6.β分布(连续)

代码:

https://github.com/graykode/distribution-is-all-you-need/blob/master/beta.py 

  • β分布与二项分布和伯努利分布共轭。

  • 利用共轭,利用已知的先验分布可以更容易地得到后验分布。

  • 当β分布满足特殊情况(α=1,β=1)时,均匀分布是相同的。

7.Dirichlet 分布(连续)

代码:

https://github.com/graykode/distribution-is-all-you-need/blob/master/dirichlet.py 

  • dirichlet 分布与多项式分布是共轭的。

  • 如果 k=2,则为β分布。

8.伽马分布(连续)

代码:

https://github.com/graykode/distribution-is-all-you-need/blob/master/gamma.py 

  • 如果 gamma(a,1)/gamma(a,1)+gamma(b,1)与 beta(a,b)相同,则 gamma 分布为β分布。

  • 指数分布和卡方分布是伽马分布的特例。

9.指数分布(连续)

代码:

https://github.com/graykode/distribution-is-all-youneed/blob/master/exponential.py 

指数分布是 α 为 1 时 γ 分布的特例。

10.高斯分布(连续)

代码:

https://github.com/graykode/distribution-is-all-you-need/blob/master/gaussian.py 

高斯分布是一种非常常见的连续概率分布。

11.正态分布(连续)

代码:

https://github.com/graykode/distribution-is-all-you-need/blob/master/normal.py 

正态分布为标准高斯分布,平均值为 0,标准差为 1。

12.卡方分布(连续)

代码:

https://github.com/graykode/distribution-is-all-you-need/blob/master/chi-squared.py 

  • k 自由度的卡方分布是 k 个独立标准正态随机变量的平方和的分布。

  • 卡方分布是 β 分布的特例

13.t 分布(连续)

代码:

https://github.com/graykode/distribution-is-all-you-need/blob/master/student-t.py 

t 分布是对称的钟形分布,与正态分布类似,但尾部较重,这意味着它更容易产生远低于平均值的值。

via:https://github.com/graykode/distribution-is-all-you-need

编辑:于腾凯

校对:洪舒越

这篇关于深度学习必懂的 13 种概率分布(附链接)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/901434

相关文章

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

Java进阶13讲__第12讲_1/2

多线程、线程池 1.  线程概念 1.1  什么是线程 1.2  线程的好处 2.   创建线程的三种方式 注意事项 2.1  继承Thread类 2.1.1 认识  2.1.2  编码实现  package cn.hdc.oop10.Thread;import org.slf4j.Logger;import org.slf4j.LoggerFactory